【題目】小明對(duì)自己上學(xué)路線的長(zhǎng)度進(jìn)行了20次測(cè)量,得到20個(gè)數(shù)據(jù)x1,x2,,x20,已知x1+x2+…+x202019,當(dāng)代數(shù)式(xx12+xx22+…+xx202取得最小值時(shí),x的值為___________.

【答案】100.95

【解析】

先設(shè)出y=x-x12+x-x22+x-x32+…+x-x202,然后進(jìn)行整理得出y=20x2-2x1+x2+x3+…+x20x+x12+x22+x32+…+x202),再求出二次函數(shù)的最小值即可.

解:設(shè)y=x-x12+x-x22+x-x32+…+x-x202
=x2-2xx1+x12+x2-2xx2+x22+x2-2xx3+x32+…+x2-2xx20+x202
=20x2-2x1+x2+x3+…+x20x+x12+x22+x32+…+x202),
=20x2-2×2019x+x12+x22+x32+…+x202),
則當(dāng)x=時(shí),(x-x12+x-x22+x-x32+…+x-x202取得最小值,
即當(dāng)x=100.95時(shí),(x-x12+x-x22+x-x32+…+x-x202取得最小值.
故答案為:100.95

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形紙片ABCD中,∠B=D=90°,點(diǎn)E,F(xiàn)分別在邊BC,CD上,將AB,AD分別沿AE,AF折疊,點(diǎn)B,D恰好都和點(diǎn)G重合,∠EAF=45°.

(1)求證:四邊形ABCD是正方形;

(2)求證:三角形ECF的周長(zhǎng)是四邊形ABCD周長(zhǎng)的一半;

(3)若EC=FC=1,求AB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】浠水縣商場(chǎng)某柜臺(tái)銷售每臺(tái)進(jìn)價(jià)分別為160元、120元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

4臺(tái)

1200

第二周

5臺(tái)

6臺(tái)

1900

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入﹣進(jìn)貨成本)

(1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);

(2)若商場(chǎng)準(zhǔn)備用不多于7500元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共50臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?

(3)在(2)的條件下,商場(chǎng)銷售完這50臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)超過1850元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B兩點(diǎn)在數(shù)軸上,點(diǎn)A表示的數(shù)為–10OB=4OA,點(diǎn)M以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)A開始向左運(yùn)動(dòng),點(diǎn)N以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)B開始向左運(yùn)動(dòng)(點(diǎn)M和點(diǎn)N同時(shí)出發(fā)).

1)數(shù)軸上點(diǎn)B對(duì)應(yīng)的數(shù)是__________,線段AB的中點(diǎn)C對(duì)應(yīng)的數(shù)是__________;

2)經(jīng)過幾秒,點(diǎn)M、點(diǎn)N到原點(diǎn)的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點(diǎn),增加下列條件,不能得出BEDF的是( 。

A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生的安全意識(shí)情況,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識(shí)分成淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)四個(gè)層次,并繪制成如下兩幅尚不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息,解答下列問題:

(1)這次調(diào)查一共抽取了 名學(xué)生,其中安全意識(shí)為很強(qiáng)的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比是 ;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)該校有1800名學(xué)生,現(xiàn)要對(duì)安全意識(shí)為淡薄”、“一般的學(xué)生強(qiáng)化安全教育,根據(jù)調(diào)查結(jié)果,估計(jì)全校需要強(qiáng)化安全教育的學(xué)生約有 名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△BAC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△AB′C′(點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)C′),連接CC′,若∠CC′B′=30°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,點(diǎn)OAC上,以OA為半徑的OAB于點(diǎn)DBD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE

1)判斷直線DEO的位置關(guān)系,并說明理由;

2)若AC=6BC=8,OA=2,求線段DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),△ABC,AB=BC,PAB邊上一點(diǎn),連接CP,PAPC為鄰邊作APCD,ACPD相交于點(diǎn)E,已知∠ABC=∠AEP=(0°<<90°).

(1)求證: ∠EAP=∠EPA;

(2)APCD是否為矩形?請(qǐng)說明理由;

(3)如圖(2),FBC中點(diǎn),連接FP,∠AEP繞點(diǎn)E順時(shí)針旋轉(zhuǎn)適當(dāng)?shù)慕嵌?/span>,得到∠MEN(點(diǎn)M、N分別是∠MEN的兩邊與BA、FP延長(zhǎng)線的交點(diǎn)).猜想線段EMEN之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案