如圖①,△ABC中,∠ABC、∠ACB的平分線交于O點(diǎn),過(guò)O點(diǎn)作BC平行線交AB、AC于E、F. 試說(shuō)明:EO=BE  
探究一:請(qǐng)寫(xiě)出圖①中線段EF與BE、CF間的關(guān)系,并說(shuō)明理由.
探究二:如圖②,△ABC若∠ABC的平分線與△ABC的外角平分線交于O,過(guò)點(diǎn)O作BC的平行線交AB于E,交AC于F.這時(shí)EF與BE、CF的關(guān)系又如何?請(qǐng)直接寫(xiě)出關(guān)系式,不需要說(shuō)明理由.
分析:由O平分∠ABC與EF∥BC,易證得∠ABO=∠EOB,即可證得EO=BE;
探究一:同上題,可得OE=BE,OF=CF,繼而可證得EF=BE+CF.
探究二:同理可證得:OE=BE,OF=CF,繼而可證得EF=BE-CF.
解答:證明:∵OB平分∠ABC,
∴∠ABO=∠OBC,
∵EF∥BC,
∴∠EOB=∠OBC,
∴∠ABO=∠EOB,
∴EO=BE;

探究一:EF=BE+CF.
理由:∵EO=BE,
同理可證:OF=CF,
∴EF=BE+CF;

探究二:EF=BE-CF.
理由:∵OB平分∠ABC,
∴∠ABO=∠OBC,
∵EF∥BC,
∴∠EOB=∠OBC,
∴∠ABO=∠EOB,
∴EO=BE;
同理可得:OF=CF,
∴EF=OE-OF=BE-CF.
點(diǎn)評(píng):此題考查了等腰三角形的性質(zhì)與判定以及平行線的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,在△ABC中,AB=AC,AD是△ABC的平分線,DE⊥AB,DF⊥AC,垂足分別是E,F(xiàn).則下面結(jié)論中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的點(diǎn)到B、C兩點(diǎn)距離相等;④圖中共有3對(duì)全等三角形,正確的有:
①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖,在△ABC中,AB=20cm,AC=12cm,點(diǎn)P從點(diǎn)B出發(fā)以每秒3cm的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q從點(diǎn)A同時(shí)出發(fā)以每秒2cm的速度向點(diǎn)C運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)△APQ是等腰三角形時(shí),運(yùn)動(dòng)的時(shí)間是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,∠BAC=100°,MP、NO分別垂直平分AB、AC,求∠1,∠2的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖,在△ABC中,∠C=90°,DE⊥AB于E,DF⊥BC于F.求證:△DEH∽△BCA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,DC是斜邊AB上的中線,EF過(guò)點(diǎn)C且平行于AB.若∠BCF=35°,則∠ACD的度數(shù)是( 。
A、35°B、45°C、55°D、65°

查看答案和解析>>

同步練習(xí)冊(cè)答案