【題目】如圖,在平面直角坐標(biāo)系中,矩形AOCB的兩邊OA、OC分別在x軸和y軸上,且OA=2,OC=1.在第二象限內(nèi),將矩形AOCB以原點O為位似中心放大為原來的 倍,得到矩形A1OC1B1 , 再將矩形A1OC1B1以原點O為位似中心放大 倍,得到矩形A2OC2B2…,以此類推,得到的矩形AnOCnBn的對角線交點的坐標(biāo)為

【答案】(﹣
【解析】解:∵在第二象限內(nèi),將矩形AOCB以原點O為位似中心放大為原來的 倍,
∴矩形A1OC1B1與矩形AOCB是位似圖形,點B與點B1是對應(yīng)點,
∵OA=2,OC=1.
∵點B的坐標(biāo)為(﹣2,1),
∴點B1的坐標(biāo)為(﹣2× ,1× ),
∵將矩形A1OC1B1以原點O為位似中心放大 倍,得到矩形A2OC2B2…,
∴B2(﹣2× × ,1× × ),
∴Bn(﹣2× ,1× ),
∵矩形AnOCnBn的對角線交點(﹣2× × ,1× × ),即(﹣ , ),
故答案為:(﹣ , ).
根據(jù)在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或﹣k,即可求得Bn的坐標(biāo),然后根據(jù)矩形的性質(zhì)即可求得對角線交點的坐標(biāo).本題考查的是矩形的性質(zhì)、位似變換的性質(zhì),在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或﹣k.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y=-x2+bx+c的部分圖象與x軸、y軸的交點分別為A(1,0),B(0,3),對稱軸是x=-1,在下列結(jié)論中,錯誤的是( 。
A.頂點坐標(biāo)為(-1,4)
B.函數(shù)的解析式為y=-x2-2x+3
C.當(dāng)x<0時,y隨x的增大而增大
D.拋物線與x軸的另一個交點是(-3,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中真命題是( )
A.兩個等腰三角形一定全等
B.正多邊形的每一個內(nèi)角的度數(shù)隨邊數(shù)增多而減少
C.菱形既是中心對稱圖形,又是軸對稱圖形
D.兩直線平行,同旁內(nèi)角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)ykx的圖象經(jīng)過點P(1,2),如圖所示

(1)求這個正比例函數(shù)的解析式;

(2)將這個正比例函數(shù)的圖象向右平移4個單位長度求出平移后的直線的解析式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中, 不是同位角的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我縣各中小學(xué)校積極組織學(xué)生開展課外閱讀活動為了解某校學(xué)生每周課外閱讀的時間量t(單位小時),采用隨機抽樣的方法抽取部分學(xué)生進行了問卷調(diào)查調(diào)查結(jié)果按0t〈2,2t〈3,3t〈4,t4分為四個等級,并分別用A、B、C、D表示.根據(jù)調(diào)查結(jié)果統(tǒng)計數(shù)據(jù)繪制成如圖所示的兩幅不完整的統(tǒng)計圖,由圖中給出的信息解答下列問題

(1)求這次抽查的學(xué)生總數(shù)是多少人,并求出x的值;

(2)將不完整的條形統(tǒng)計圖補充完整;

(3)若該校共有學(xué)生3600試估計每周課外閱讀時間量滿足2t〈4的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以直線AB上一點O為端點作射線OC,將一塊直角三角板的直角頂點放在O(:∠DOE=90°).

(1)如圖①,若直角三角板DOE的一邊OD放在射線OB,∠BOC=60°,∠COE的度數(shù)

(2)如圖②,將三板DOEO逆時針轉(zhuǎn)動到某個位置時若恰好滿足5∠COD=∠AOE,∠BOC=60°,∠BOD的度數(shù);

(3)如圖③,將直角三角板DOE繞點O逆時針方向轉(zhuǎn)動到某個位置,OE恰好平分∠AOC,請說明OD所在射線是∠BOC的平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,BD、BE分別是高和角平分線,點F在CA的延長線上,F(xiàn)H⊥BE,交BD于點G,交BC于點H;下列結(jié)論:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C,其中正確的結(jié)論有___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋子中裝有黑、白小球各兩個,這些小球除顏色外無其他差別,從袋子中隨機摸出一個小球后,放回并搖勻,再隨機摸出一個小球,則兩次摸出的小球都是白球的概率為

查看答案和解析>>

同步練習(xí)冊答案