精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,B=60°,∠C=30°,ADAE分別是△ABC的高和角平分線,求DAE的度數.

【答案】DAE=15°.

【解析】

由三角形的內角和定理,可求BAC=90°,又由AEBAC的平分線,可求BAE=45°,再由ADBC邊上的高,可知ADB=90°,可求BAD=30°,所以DAE=∠BAE-∠BAD=15°.

在△ABC中,∠B=60°,C=30°

∴∠BAC=180°﹣B﹣C=180°﹣30°﹣60°=90°

AD是的角平分線

∴∠BAE=BAC=45°,

AE是△ABC的高,

∴∠ADB=90°

∴在△ADB中,∠BAD=90°﹣B=90°﹣60°=30°

∴∠DAE=BAE﹣BAD=45°﹣30°=15°

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系,A(-2,0),B(0,3),M在直線y=x 上,且SΔMAB=6,則點M的坐標為_____.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AD的角平分線,,,垂足分別為點E、點F,連接EFAD相交于點O,下列結論不一定成立的是  

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了解學生體育訓練的情況,某市從全市九年級學生中隨機抽取部分學生進行了一次體育科目測試(把成績結果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結果繪成了如下兩幅不完整的統(tǒng)計圖.請根據統(tǒng)計圖中的信息解答下列問題:
(1)求本次抽樣測試的學生人數;
(2)求扇形圖中∠α的度數,并把條形統(tǒng)計圖補充完整;
(3)該市九年級共有學生9000名,如果全部參加這次體育測試,則測試等級為D的約有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】猜想與證明:
如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若M為AF的中點,連接DM、ME,試猜想DM與ME的關系,并證明你的結論.
拓展與延伸:

(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關系為
(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結論仍然成立.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD的對角線ACBD交于點O,則下列不能判斷四邊形ABCD是平行四邊形的條件是( 。

A. OA=OCADBC B. ABC=ADC,ADBC

C. AB=DC,AD=BC D. ABD=ADB,BAO=DCO

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算題
(1)計算:4sin60°+|3﹣ |﹣( ﹣1+(π﹣2017)0
(2)先化簡,再求值:( ﹣1)÷ ,其中x的值從不等式組 的整數解中任選一個.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,以AB為直徑的⊙O交∠BAD的角平分線于C,過C作CD⊥AD于D,交AB的延長線于E.
(1)求證:直線CD為⊙O的切線;
(2)當AB=2BE,且CE= 時,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,海中一小島有一個觀測點A,某天上午觀測到某漁船在觀測點A的西南方向上的B處跟蹤魚群由南向北勻速航行.B處距離觀測點30 海里,若該漁船的速度為每小時30海里,問該漁船多長時間到達觀測點A的北偏西60°方向上的C處?(計算結果用根號表示,不取近似值)

查看答案和解析>>

同步練習冊答案