【題目】將一塊含30°角的直角三角板OAB和一塊等腰直角三角板ODC按如圖的方式放置在平面直角坐標系中.已知C、B兩點分別在x軸和y軸上,∠ABO=D=90°,OB=OC,AB=3.

(1)求邊OC的長.

(2)將直角三角板OAB繞點順時針方向旋轉,使OA落在x軸上的OA′位置,求圖中陰影部分的面積.

【答案】(1)3;(2) 6π﹣

【解析】

(1)先利用含30度的直角三角形三邊的關系求出OB,然后利用OC=OB得到OC的長;

(2)先計算出OC的長,然后根據(jù)扇形面積公式,利用S陰影部分=S扇形AOA′-SOCD進行即可.

(1)在RtOAB中,∵∠AOB=30°,

OB=AB=3,

OC=OB=3,

(2)在RtOAB中,∵∠AOB=30°,

AB=2AB=6,

∵△ODC為等腰直角三角形,

OD=CD=OC=,

S陰影部分=S扇形AOA′﹣SOCD==6π﹣ .

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】新春佳節(jié),電子鞭炮因其安全、無污染開始走俏.某商店經(jīng)銷一種電子鞭炮,已知這種電子鞭炮的成本價為每盒80元,市場調(diào)查發(fā)現(xiàn),該種電子鞭炮每天的銷售量y(盒)與銷售單價x(元)有如下關系:y=﹣2x+320(80≤x≤160).設這種電子鞭炮每天的銷售利潤為w元.

(1)求wx之間的函數(shù)關系式;

(2)該種電子鞭炮銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?

(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想買得快.那么銷售單價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB17,BC21AC10,動點P從點C出發(fā),沿著CB運動,速度為每秒3個單位,到達點B時運動停止,設運動時間為t秒,請解答下列問題:

1)求BC上的高;

2)當t為何值時,ACP為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c和直線y=x+1交于A,B兩點,點Ax軸上,點B在直線x=3上,直線x=3x軸交于點C

(1)求拋物線的解析式;

(2)點P從點A出發(fā),以每秒個單位長度的速度沿線段AB向點B運動,點Q從點C出發(fā),以每秒2個單位長度的速度沿線段CA向點A運動,點P,Q同時出發(fā),當其中一點到達終點時,另一個點也隨之停止運動,設運動時間為t秒(t>0).以PQ為邊作矩形PQNM,使點N在直線x=3上.

①當t為何值時,矩形PQNM的面積最。坎⑶蟪鲎钚∶娣e;

②直接寫出當t為何值時,恰好有矩形PQNM的頂點落在拋物線上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,在下列代數(shù)式中(1)a+b+c>0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0; 其中正確的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象過點3,0)、(-10

1)求二次函數(shù)的解析式;

2)如圖,二次函數(shù)的圖象與軸交于點,二次函數(shù)圖象的對稱軸與直線交于點,求點的坐標;

3)在第一象限內(nèi)的拋物線上有一點,當的面積最大時,求點的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場將某種商品的售價從原來的每件元經(jīng)兩次調(diào)價后調(diào)至每件元.

(1)若該商店兩次調(diào)價的降價率相同,求這個降價率;

(2)經(jīng)調(diào)查,該商品每降價元,即可多銷售件.若該商品原來每月可銷售件,那么兩次調(diào)價后,每月可銷售該商品多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等邊AOB的邊長為4,以O為坐標原點,OB所在直線為x軸建立如圖所示的平面直角坐標系.

1)求點A的坐標;

2)若直線ykxk0)與線段AB有交點,求k的取值范圍;

3)若點Cx軸正半軸上,以線段AC為邊在第一象限內(nèi)作等邊ACD,求直線BD的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只不透明的箱子里共有3個球,把它們的分別編號為1,2,3,這些球除編號不同外其余都相同,從箱子中隨機摸出一個球,記錄下編號后將它放回箱子,攪勻后再摸出一個球并記錄下編號.

(1)用樹狀圖或列表法舉出所有可能出現(xiàn)的結果;

(2)求兩次摸出的球都是編號為3的球的概率.

查看答案和解析>>

同步練習冊答案