【題目】如圖,等邊△ABC的邊長為12, D為AB邊上一動點,過點D作DE⊥BC于點E.過點E作EF⊥AC于點F.
(1)若AD=2,求AF的長;
(2)當AD取何值時,DE=EF?
【答案】(1);(2)當AD=4時,DE=EF.
【解析】
(1)根據已知條件得出△BDE和△CEF都是含30°的直角三角形,再根據含30°的直角三角形性質計算即可;
(2)當DE=EF時,可得出,進而根據BD=CE列出關于AD的等式,解出即可.
解:∵等邊△ABC的邊長為12,
∴∠B=∠C=60°,AB=BC=AC=12,
又∵DE⊥BC,EF⊥AC,
∴∠BED=∠CFE=90°,
∴∠BDE=∠CEF=30°,
若AD=2,
則BD=12-2=10,
∴在Rt△BDE中,,
∴CE=BC-BE=12-5=7,
∴在Rt△CEF中,,
∴
故.
(2)當DE=EF時,
在△BDE和△CEF中
∴(AAS)
∴BD=CE
設AD=x
則,
∴,
∴
∴
解得:
∴當AD=4時,DE=EF.
科目:初中數學 來源: 題型:
【題目】在讀書月活動中,學校準備購買一批課外讀物.為使課外讀物滿足同學們的需求,學校就“我最喜愛的課外讀物”從文學、藝術、科普和其他四個類別進行了抽樣調查(每位同學只選一類),如圖是根
據調查結果繪制的兩幅不完整的統(tǒng)計圖.
請你根據統(tǒng)計圖提供的信息,解答下列問題:
(1)本次調查中,一共調查了 名同學;
(2)條形統(tǒng)計圖中,m= ,n= ;
(3)扇形統(tǒng)計圖中,藝術類讀物所在扇形的圓心角是 度;
(4)學校計劃購買課外讀物6000冊,請根據樣本數據,估計學校購買其他類讀物多少冊比較合理?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知四邊形ABCD是⊙O的內接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E.
(1)延長DE交⊙O于點F,延長DC,FB交于點P,如圖1.求證:PC=PB;
(2)過點B作BG⊥AD,垂足為G,BG交DE于點H,且點O和點A都在DE的左側,如圖2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了深化改革,某校積極開展校本課程建設,計劃成立“文學鑒賞”、“科學實驗”、“音樂舞蹈”和“手工編織”等多個社團,要求每位學生都自主選擇其中一個社團.為此,隨機調查了本校各年級部分學生選擇社團的意向,并將調查結果繪制成如下統(tǒng)計圖表(不完整):
某校被調查學生選擇社團意向統(tǒng)計表
選擇意向 | 所占百分比 |
文學鑒賞 | a |
科學實驗 | 35% |
音樂舞蹈 | b |
手工編織 | 10% |
其他 | c |
根據統(tǒng)計圖表中的信息,解答下列問題:
(1)求本次調查的學生總人數及a,b,c的值;
(2)將條形統(tǒng)計圖補充完整;
(3)若該校共有1200名學生,試估計全校選擇“科學實驗”社團的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察下列格式, - , , , …
(1)化簡以上各式,并計算出結果;
(2)以上格式的結果存在一定的規(guī)律,請按規(guī)律寫出第5個式子及結果.
(3)用含n(n≥1的整數)的式子寫出第n個式子及結果,并給出證明的過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB=16,O為AB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉270°后得到扇形COD,AP,BQ分別切優(yōu)弧于點P,Q,且點P, Q在AB異側,連接OP.
(1)求證:AP=BQ;
(2)當BQ=4時,求扇形COQ的面積及的長(結果保留π);
(3)若△APO的外心在扇形COD的內部,請直接寫出OC的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BD是矩形ABCD的一條對角線.
(1)作BD的垂直平分線EF,分別交AD,BC于點E,F,垂足為點O;(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法)
(2)在(1)中,連接BE和DF,求證:四邊形DEBF是菱形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.
(1)求y與x之間的函數關系式;
(2)直接寫出當x>0時,不等式x+b>的解集;
(3)若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足為點D,E是BD的中點,聯結AE并延長,交邊BC于點F.
(1)求∠EAD的余切值;
(2)求的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com