【題目】

如圖,把EFP放置在菱形ABCD中,使得頂點(diǎn)E,F(xiàn),P分別在線段AB,AD,AC上,已知EP=FP=6,EF=,BAD=60°,且AB>

EPF的大;

AP=8,求AE+AF的值;

EFP的三個(gè)頂點(diǎn)E,FP分別在線段AB,AD,AC上運(yùn)動(dòng),請(qǐng)直接寫出AP長(zhǎng)的最大值和最小值.

【答案】(1)120°;(2);(3)AP的最大值為12,AP的最小值為6.

【解析】

試題分析:(1)如圖,過點(diǎn)P作PGEF于G,已知PE=PF=6,EF=,根據(jù)等腰三角形的性質(zhì)可得FG=EG=,FPG=EPG=.在RtFPG中,由sinFPG=可求得FPG=60°,所以EPF=2FPG=120°.(2)PMABMPNADN,根據(jù)菱形的性質(zhì)可得DAC=BAC,AM=AN,PM=PN,再利用HL證明RtPMERtPNF,即可得NF=ME.又因AP=10,所以AM= AN =APcos30°==.所以AE+AF=(AM+ME)+(AN-NF)=AM+AN=.(3)如圖,當(dāng)EFP的三個(gè)頂點(diǎn)E,F(xiàn),P分別在線段AB,AD,AC上運(yùn)動(dòng)時(shí),點(diǎn)P在,之間運(yùn)動(dòng),易知,所以AP的最大值為12,AP的最小值為6.

試題解析:(1)如圖,過點(diǎn)P作PGEF于G.

PE=PF=6,EF=,

FG=EG=,FPG=EPG=.

在RtFPG中,sinFPG=.

∴∠FPG=60°,

∴∠EPF=2FPG=120°.

(2)作PMABM,PNADN

AC為菱形ABCD的對(duì)角線,

∴∠DAC=BAC,AM=AN,PM=PN.

在RtPME和RtPNF 中,PM=PN,PE=PF,

RtPMERtPNF

NF=ME.

又AP=10,,

AM= AN =APcos30°==.

AE+AF=(AM+ME)+(AN-NF)=AM+AN=.

(3) 如圖,當(dāng)EFP的三個(gè)頂點(diǎn)E,F(xiàn),P分別在線段AB,AD,AC上運(yùn)動(dòng)時(shí),點(diǎn)P在,之間運(yùn)動(dòng),易知,

AP的最大值為12,AP的最小值為6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:將一個(gè)平面圖形分成面積相等的兩部分的直線叫做該平面圖形的等積線,等積線被 這個(gè)平面圖形截得的線段叫做該圖形的等積線段(例如三角形的中線就是三角形的等積線段).已 知菱形的邊長(zhǎng)為 4,且有一個(gè)內(nèi)角為 60°,設(shè)它的等積線段長(zhǎng)為 m,則 m 的取值范圍是(

A. m=4 m=4 B. 4m4 C. 2 D. 2 m4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】揚(yáng)州市瘦西湖風(fēng)景區(qū)2015年某月的接待游客的人數(shù)約809700人次,將這個(gè)數(shù)字用科學(xué)記數(shù)法表示為(精確到萬位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=D,E分別為AC,AB的中點(diǎn),BFCEDE的延長(zhǎng)線于點(diǎn)F.

(1)求證:四邊形ECBF是平行四邊形;

(2) 當(dāng)∠A=時(shí),求證:四邊形ECBF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為使一個(gè)四邊形木架不變形我們會(huì)從中釘一根木條,這是利用了三角形的____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)等腰三角形的一個(gè)角為50°,則它的頂角的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:|﹣3|﹣1=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電腦公司銷售部為了定制下個(gè)月的銷售計(jì)劃,對(duì)20位銷售員本月的銷售量進(jìn)行了統(tǒng)計(jì),繪制成如圖所示的統(tǒng)計(jì)圖,則這20位銷售人員本月銷售量的平均數(shù)、中位數(shù)、眾數(shù)分別是(

A.19,20,14 B.19,20,20 C.18.4,20,20 D.18.4,25,20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中錯(cuò)誤的有( 。﹤(gè)

一條對(duì)角線平分一內(nèi)角的平行四邊形是菱形;

兩條對(duì)角線互相垂直的四邊形是平行四邊形;

依次連接菱形各邊中點(diǎn)得到的圖形是正方形;

兩條對(duì)角線互相垂直且相等的四邊形是正方形.

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案