【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點F,過FDEBC,交AB于點D,交AC于點E.若BD=4,DE=7,則線段EC的長為(  )

A. 3 B. 4 C. 3.5 D. 2

【答案】A

【解析】

根據(jù)ABC中,∠ABC和∠ACB的平分線相交于點F.求證∠DBF=FBC,ECF=BCF,再利用兩直線平行內(nèi)錯角相等,求證出∠DFB=DBF,CFE=BCF,即BD=DF,F(xiàn)E=CE,然后利用等量代換即可求出線段CE的長.

∵∠ABC和∠ACB的平分線相交于點F,

∴∠DBF=FBC,ECF=BCF,

DFBC,交AB于點D,交AC于點E.

∴∠DFB=DBF,CFE=BCF,

BD=DF=4,F(xiàn)E=CE,

CE=DE-DF=7-4=3.

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+3與x軸相交于點A,與y軸相交于點B.

(1)求A,B兩點的坐標(biāo);

(2)過B點作直線與x軸交于點P,若ABP的面積為,試求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠A=30°,C=90°,E是斜邊AB的中點,點PAC邊上一動點,若RtABC的直角邊AC=4,則PB+PE的最小值等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在長方形ABCD內(nèi),將兩張邊長分別為ab(ab)的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),長方形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2.當(dāng)AD﹣AB=2時,S2﹣S1的值為_______(用a、b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請仔細(xì)閱讀下面材料,然后解決問題:

在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”.例如: , ;當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”,例如: , .我們知道,假分?jǐn)?shù)可以化為帶分?jǐn)?shù),例如: ,類似的,假分式也可以化為“帶分式”(整式與真分式和的形式),例如:

(1)將分式化為帶分式;

(2)當(dāng)x取哪些整數(shù)值時,分式的值也是整數(shù)?

(3)當(dāng)x的值變化時,分式的最大值為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】家庭過期藥品屬于國家危險廢物處理不當(dāng)將污染環(huán)境,危害健康.某市藥監(jiān)部門為了了解市民家庭處理過期藥品的方式,決定對全市家庭作一次簡單隨機(jī)抽樣調(diào)查本次抽樣調(diào)查發(fā)現(xiàn),接受調(diào)查的家庭都有過期藥品,現(xiàn)將有關(guān)數(shù)據(jù)呈現(xiàn)如圖:

(1)求m、n的值;

(2)補(bǔ)全條形統(tǒng)計圖;

(3)家庭過期藥品的正確處理方式是送回收站,若該市有180萬戶家庭,請估計大約有多少戶家庭處理過期藥品的方式是送回收站.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=x+b,它的圖象與兩坐標(biāo)軸所圍成的圖形的面積等于2.

(1)求b的值;

(2)若函數(shù)y=x+b的圖象交y軸于正半軸,則當(dāng)x取何值時,y的值是正數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十八世紀(jì)瑞士數(shù)學(xué)家歐拉證明了簡單多面體中頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個有趣的關(guān)系式,請你觀察下列幾種簡單多面體模型,解答下列問題:

1 2

探索新知如圖1,(1)根據(jù)上面多面體模型,完成表格中的空格;

多面體

頂點數(shù)(V

面數(shù)(F

棱數(shù)(E

四面體

4

4

長方體

8

6

12

正八面體

8

12

正十二面體

20

12

30

你發(fā)現(xiàn)頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的關(guān)系式是   

(2)根據(jù)以上關(guān)系式猜想是否存在一個多面體,它有16個面,50條棱,34個頂點?并寫出理由。

(實際應(yīng)用)如圖2,足球一般有32塊黑白皮子縫合而成,黑色的是正五邊形,白色的是正六邊形,如

果我們近似把足球看成一個多面體.

(1)設(shè)黑色的正五邊形有x塊,則白色的正六邊形有(32﹣x塊,當(dāng)把足球看成一個多面體時,它的棱數(shù)是  ,它的頂點數(shù)是  

(2)求出黑皮和白皮各有多少塊

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AE上一動點(不與點AE重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,ADBE交于點O,ADBC交于點PBECD交于點Q,連接PQ.以下五個結(jié)論:

①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP⑤∠AOB=60°

其中正確的結(jié)論的個數(shù)是( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

同步練習(xí)冊答案