【題目】如圖所示,四邊形ABCD是平行四邊形,按下列條件得到的四邊形BFDE是平行四邊形的個數(shù)是(  )

①圖甲,DEAC,BFAC ②圖乙,DE平分∠ADC,BF平分∠ABC

③圖丙,EAB的中點,FCD的中點 ④圖丁,EAB上一點,EFAB

A. 1B. 2C. 3D. 4

【答案】C

【解析】

①由DEAC,BFAC,可得DEBF,又由四邊形ABCD是平行四邊形,利用ACDACB的面積相等,即可判定DE=BF,然后由一組對邊平行且相等的四邊形是平行四邊形,證得四邊形BFDE是平行四邊形;
②由四邊形ABCD是平行四邊形,DE平分∠ADCBF平分∠ABC,易證得ADE≌△CBF,則可判定DEBFDE=BF,繼而證得四邊形BFDE是平行四邊形;
③由四邊形ABCD是平行四邊形,EAB的中點,FCD的中點,易證得DFBEDF=BE,繼而證得四邊形BFDE是平行四邊形;
④無法確定DF=BE,只能證得DFBE,故不能判定四邊形BFDE是平行四邊形.

①∵四邊形ABCD是平行四邊形,

DEAC,BFAC,

DEBF,

DE=BF,

∴四邊形BFDE是平行四邊形;

②∵四邊形ABCD是平行四邊形,

∴∠ADC=ABC,AD=CB,ADBC

∴∠DAE=BCF,

DE平分∠ADC,BF平分∠ABC,

∴∠ADE=CBF,

ADECBF中,

ADECBF(ASA),

DE=BF,∠AED=BFC,

∴∠DEF=BFE

DEBF,

∴四邊形BFDE是平行四邊形;

③證明:∵四邊形ABCD是平行四邊形,

ABCDAB=CD,

EAB的中點,FCD的中點,

DF=BE,

∴四邊形BFDE是平行四邊形;

④∵四邊形ABCD是平行四邊形,

ABCD,AB=CD,

EAB上一點,EFAB,

無法判定DF=BE,

∴四邊形BFDE不一定是平行四邊形。

故選:C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線ACBD相交于點O,正方形A′B′C′D′的頂點A′與點O重合,A′B′BC于點EA′D′CD于點F.

1)求證:OE=OF;

2)若正方形ABCD的邊長為1,求兩個正方形重疊部分的面積;

3)若正方形 A′B′C′D′繞著O點旋轉(zhuǎn),EF的長度何時最小,并求出最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】安全教育平臺是中國教育學會為方便學長和學生參與安全知識活動、接受安全提醒的一種應(yīng)用軟件.某校為了了解家長和學生參與防溺水教育的情況,在本校學生中隨機抽取部分學生作調(diào)查,把收集的數(shù)據(jù)分為以下4類情形:A.僅學生自己參與;B.家長和學生一起參與;

C.僅家長自己參與; D.家長和學生都未參與.

請根據(jù)圖中提供的信息,解答下列問題:

(1)在這次抽樣調(diào)查中,共調(diào)查了________名學生;

(2)補全條形統(tǒng)計圖,并在扇形統(tǒng)計圖中計算C類所對應(yīng)扇形的圓心角的度數(shù);

(3)根據(jù)抽樣調(diào)查結(jié)果,估計該校2000名學生中家長和學生都未參與的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,邊長為a的正方形發(fā)生形變后成為邊長為a的菱形,如果這個菱形的一組對邊之間的距離為h,我們把的值叫做這個菱形的形變度.例如,當形變后的菱形是如圖2形狀(被對角線BD分成2個等邊三角形),則這個菱形的形變度2.如圖3,正方形由16個邊長為1的小正方形組成,形變后成為菱形,AEFAE、F是格點)同時形變?yōu)?/span>A′E′F′,若這個菱形的形變度”k,則SA′E′F′__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某修理廠需要購進甲、乙兩種配件,經(jīng)調(diào)查,每個甲種配件的價格比每個乙種配件的價格少0.4萬元,且用16萬元購買的甲種配件的數(shù)量與用24萬元購買的乙種配件的數(shù)量相同

(1)求每個甲種配件、每個乙種配件的價格分別為多少萬元;

(2)現(xiàn)投入資金80萬元,根據(jù)維修需要預(yù)測,甲種配件要比乙種配件至少要多22件,問乙種配件最多可購買多少件

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形ABCD頂點A的坐標為(0,4),B點在x軸上,對角線ACBD交于點M,OM=6,則點C的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ACB=90°,A=30°,CD為ABC的中線,作COAB于O,點E在CO延長線上,DE=AD,連接BE、DE.

(1)求證:四邊形BCDE為菱形;

(2)把ABC分割成三個全等的三角形,需要兩條分割線段,若AC=6,求兩條分割線段長度的和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD是邊長為2的菱形,∠BAD=60°,對角線ACBD交于點O,過點O的直線EFAD于點E,交BC于點F

1)求證:AOE≌△COF;

2)若∠EOD=30°,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校七年級社會實踐小組去某商場調(diào)查商品的銷售情況,了解到該商場以每件80元的價格購進了某品牌襯衫500件,并以每件120元的價格銷售了400件,商場準備采取促銷措施,將剩下的襯衫降價銷售.

1)每件襯衫降價多少元時,銷售完這批襯衫正好達到盈利45%的預(yù)期目標?

2)在(1)的條件下,某公司給員工發(fā)福利,在該商場促銷錢購買了20件該品牌的襯衫發(fā)給員工,后因為有新員工加入,又要購買5件該襯衫,購買這5件襯衫時恰好趕上該商場進行促銷活動,求該公司購買這25件襯衫的平均價格.

查看答案和解析>>

同步練習冊答案