【題目】如圖,已知矩形ABCDAB=8,AD=4,ECD邊上一點(diǎn),CE=5,P點(diǎn)從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度沿著邊BA向終點(diǎn)A運(yùn)動(dòng),連接PE,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,則當(dāng)t的值為______時(shí),∠PAE為等腰三角形?

【答案】32.

【解析】

根據(jù)矩形的性質(zhì)求出∠D=90°,AB=CD=8,求出DE后根據(jù)勾股定理求出AE;過(guò)EEMABM,過(guò)PPQCDQ,求出AM=DE=3,當(dāng)EP=EA時(shí),AP=2DE=6,即可求出t;當(dāng)AP=AE=5時(shí),求出BP=3,即可求出t;當(dāng)PE=PA時(shí),則x2=x-32+42,求出x,即可求出t

∵四邊形ABCD是長(zhǎng)方形,

∴∠D=90°,AB=CD=8,

CE=5

DE=3,

RtADE,D=90°,AD=4,DE=3,由勾股定理得:AE==5;

過(guò)EEMABM,過(guò)PPQCDQ,

AM=DE=3,

PAE是等腰三角形,則有三種可能:

當(dāng)EP=EA時(shí),AP=2DE=6,

所以t==2

當(dāng)AP=AE=5時(shí),BP=85=3,

所以t=3÷1=3;

當(dāng)PE=PA時(shí),設(shè)PA=PE=x,BP=8x,EQ=5(8x)=x3,

x2=(x3)2+42

解得:x=,

t=(8)÷1=,

綜上所述t=32時(shí),PAE為等腰三角形.

故答案為:32.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的頂點(diǎn)的坐標(biāo)為,在第一象限反比例函數(shù)的圖象分別經(jīng)過(guò)兩點(diǎn),延長(zhǎng)軸于點(diǎn). 設(shè)是反比例函數(shù)圖象上的動(dòng)點(diǎn),若的面積是面積的2倍,的面積等于,則的值為________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了了解學(xué)生對(duì)語(yǔ)文、數(shù)學(xué)、英語(yǔ)、物理四科的喜愛(ài)程度(每人只選一科),特對(duì)八年級(jí)某班進(jìn)行了調(diào)查,并繪制成如下頻數(shù)和頻率統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖:

科目

頻數(shù)

頻率

語(yǔ)文

0.5

數(shù)學(xué)

12

英語(yǔ)

6

物理

0.2

1)求出這次調(diào)查的總?cè)藬?shù);

2)求出表中的值;

3)若該校八年級(jí)有學(xué)生1000人,請(qǐng)你算出喜愛(ài)英語(yǔ)的人數(shù),并發(fā)表你的看法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:有一組對(duì)邊平行,有一個(gè)內(nèi)角是它對(duì)角的一半的凸四邊形叫做半對(duì)角四邊形,如圖1,直線,點(diǎn),在直線上,點(diǎn),在直線上,若,則四邊形是半對(duì)角四邊形.

1)如圖1,已知,,,若直線,之間的距離為,則AB的長(zhǎng)是____,CD的長(zhǎng)是______;

2)如圖2,點(diǎn)是矩形的邊上一點(diǎn),,.若四邊形為半對(duì)角四邊形,求的長(zhǎng);

3)如圖3,以的頂點(diǎn)為坐標(biāo)原點(diǎn),邊所在直線為軸,對(duì)角線所在直線為軸,建立平面直角坐標(biāo)系.點(diǎn)是邊上一點(diǎn),滿足

①求證:四邊形是半對(duì)角四邊形;

②當(dāng),時(shí),將四邊形向右平移個(gè)單位后,恰有兩個(gè)頂點(diǎn)落在反比例函數(shù)的圖象上,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某經(jīng)銷商從市場(chǎng)得知如下信息:

某品牌空調(diào)扇

某品牌電風(fēng)扇

進(jìn)價(jià)(元/臺(tái))

700

100

售價(jià)(元/臺(tái))

900

160

他現(xiàn)有40000元資金可用來(lái)一次性購(gòu)進(jìn)該品牌空調(diào)扇和電風(fēng)扇共100臺(tái),設(shè)該經(jīng)銷商購(gòu)進(jìn)空調(diào)扇臺(tái),空調(diào)扇和電風(fēng)扇全部銷售完后獲得利潤(rùn)為.

1)求關(guān)于的函數(shù)解析式;

2)利用函數(shù)性質(zhì),說(shuō)明該經(jīng)銷商如何進(jìn)貨可獲利最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠180°,∠2100°,∠C=∠D

1)判斷ACDF的位置關(guān)系,并說(shuō)明理由;

2)若∠C比∠A20°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,C=90°,AC=12,BC=9,AB=15,若動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒3個(gè)單位,設(shè)運(yùn)動(dòng)的時(shí)間為t.

1)當(dāng)t=______時(shí),CPABC的面積分成相等的兩部分;

2)當(dāng)t=5時(shí),CPABC分成的兩部分面積之比是SAPCSBPC=______

3)當(dāng)t=______時(shí),BPC的面積為18.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為6的正三角形紙片ABC按如下順序進(jìn)行兩次折疊,展平后,得折痕AD,BE(如圖①),點(diǎn)O為其交點(diǎn).

(1)探求AOOD的數(shù)量關(guān)系,并說(shuō)明理由;

(2)如圖②,若P,N分別為BE,BC上的動(dòng)點(diǎn).

Ⅰ)當(dāng)PN+PD的長(zhǎng)度取得最小值時(shí),求BP的長(zhǎng)度;

Ⅱ)如圖③,若點(diǎn)Q在線段BO上,BQ=1,則QN+NP+PD的最小值=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形 與矩形 如圖放置,點(diǎn) 共線,點(diǎn)共線,連接 ,取的中點(diǎn) ,連接 . ,則的長(zhǎng)為

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案