【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F(xiàn)為垂足.下列結論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正確的是(
A.①②③
B.①③④
C.①②④
D.①②③④

【答案】D
【解析】解: ① BD為△ABC的角平分線,∴∠ABD=∠CBD,
∴在△ABD和△EBC中, ,
∴△ABD≌△EBC(SAS),…①正確;
②∵BD為△ABC的角平分線,BD=BC,BE=BA,
∴∠BCD=∠BDC=∠BAE=∠BEA,
∵△ABD≌△EBC,∴∠BCE=∠BDA,
∴∠BCE+∠BCD=∠BDA+∠BDC=180°,…②正確;
③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,
∴∠DCE=∠DAE,
∴△ACE為等腰三角形,
∴AE=EC,
∵△ABD≌△EBC,
∴AD=EC,
∴AD=AE=EC.…③正確;
④過E作EG⊥BC于G點,

∵E是BD上的點,∴EF=EG,
∵在RT△BEG和RT△BEF中,
∴RT△BEG≌RT△BEF(HL),
∴BG=BF,
∵在RT△CEG和RT△AFE中,
∴RT△CEG≌RT△AFE(HL),
∴AF=CG,
∴BA+BC=BF+FA+BG﹣CG=BF+BG=2BF.…④正確.
故選D.
易證△ABD≌△EBC,可得∠BCE=∠BDA,AD=EC可得①②正確,再根據角平分線的性質可求得∠DAE=∠DCE,即③正確,根據③可求得④正確.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若某人沿坡度ⅰ=3:4的坡度前進10m,則他所在的位置比原來的位置升高 m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在ABC中,B=90°,以AB上的一點O為圓心,以OA為半徑的圓交AC于點D,交AB于點E.

(1)求證:ACAD=ABAE;

(2)如果BD是O的切線,D是切點,E是OB的中點,當BC=2時,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形OABC中,O為直角坐標系的原點,A、B、C的坐標分別為(14,0)、(14,3)、(4,3).點P、Q同時從原點出發(fā),分別作勻速運動,其中點P沿OA向終點A運動,速度為每秒1個單位;點Q沿OC、CB向終點B運動,當這兩點中有一點到達自己的終點時,另一點也停止運動.設P從出發(fā)起運動了t秒.

(1)如果點Q的速度為每秒2個單位,①試分別寫出這時點Q在OC上或在CB上時的坐標(用含t的代數(shù)式表示,不要求寫出t的取值范圍);

②求t為何值時,PQ∥OC?

(2)如果點P與點Q所經過的路程之和恰好為梯形OABC的周長的一半,①試用含t的代數(shù)式表示這時點Q所經過的路程和它的速度;

②試問:這時直線PQ是否可能同時把梯形OABC的面積也分成相等的兩部分?如有可能,求出相應的t的值和P、Q的坐標;如不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校學生對乒乓球、羽毛球、排球、籃球和足球五種球類運動項目的喜愛情況(每位同學必須且只能從中選擇一項),隨機選取了若干名學生進行抽樣調查,并將調查結果繪制成了不完整的統(tǒng)計圖.

(1)參加調查的學生一共有名,圖2中乒乓球所在扇形的圓心角為°;
(2)在圖1中補全條形統(tǒng)計圖(標上相應數(shù)據);
(3)若該校共有2000名同學,請根據抽樣調查數(shù)據估計該校同學中喜歡足球運動的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,D、E、F分別為AB、BC、AC邊上的中點,AC=4cm,BC=6cm,那么四邊形CEDF為 , 它的邊長分別為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題
(1)如圖,MN∥EF,GH∥EF,∠CAB=90°,∠1=70°,求:∠ABF的度數(shù).

(2)計算: + +| ﹣2|﹣2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,港口B位于港口O正西方向120km處,小島C位于港口O北偏西60°的方向.一艘游船從港口O出發(fā),沿OA方向(北偏西30°)以vkm/h的速度駛離港口O,同時一艘快艇從港口B出發(fā),沿北偏東30°的方向以60km/h的速度駛向小島C,在小島C用1h加裝補給物資后,立即按原來的速度給游船送去.

(1)快艇從港口B到小島C需要多長時間?

(2)若快艇從小島C到與游船相遇恰好用時1h,求v的值及相遇處與港口O的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形的對角線互相平行________事件.(填必然、隨機不可能

查看答案和解析>>

同步練習冊答案