【題目】如圖,AB是半徑為1的⊙O的直徑,點(diǎn)C在⊙O上,∠CAB=30°,D為劣弧CB的中點(diǎn),點(diǎn)P是直徑AB上一個(gè)動(dòng)點(diǎn),則PC+PD的最小值為( )
A.1B.2C.D.
【答案】C
【解析】
作D點(diǎn)關(guān)于AB的對(duì)稱點(diǎn)E,連接OC.OE、CE,CE交AB于P',如圖,利用對(duì)稱的性質(zhì)得到P'E=P'D,,再根據(jù)兩點(diǎn)之間線段最短判斷點(diǎn)P點(diǎn)在P'時(shí),PC+PD的值最小,接著根據(jù)圓周角定理得到∠BOC=60°,∠BOE=30°,然后通過(guò)證明△COE為等腰直角三角形得到CE的長(zhǎng)即可.
作D點(diǎn)關(guān)于AB的對(duì)稱點(diǎn)E,連接OC、OE、CE,CE交AB于P',如圖,
∵點(diǎn)D與點(diǎn)E關(guān)于AB對(duì)稱,
∴P'E=P'D,,
∴P'C+P'D=P'C+P'E=CE,
∴點(diǎn)P點(diǎn)在P'時(shí),PC+PD的值最小,最小值為CE的長(zhǎng)度.
∵∠BOC=2∠CAB=2×30°=60°,
而D為的中點(diǎn),
∴∠BOE∠BOC=30°,
∴∠COE=60°+30°=90°,
∴△COE為等腰直角三角形,
∴CEOC,
∴PC+PD的最小值為.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉辦抽獎(jiǎng)活動(dòng),規(guī)則如下:在不透明的袋子中有2個(gè)紅球和2個(gè)黑球,這些球除顏色外都相同,顧客每次摸出一個(gè)球,若摸到紅球,則獲得1份獎(jiǎng)品,若摸到黑球,則沒(méi)有獎(jiǎng)品。
(1)如果小芳只有一次摸球機(jī)會(huì),那么小芳獲得獎(jiǎng)品的概率為 ;
(2)如果小芳有兩次摸球機(jī)會(huì)(摸出后不放回),求小芳獲得2份獎(jiǎng)品的概率。(請(qǐng)用“畫(huà)樹(shù)狀圖”或“列表”等方法寫出分析過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)圖象的頂點(diǎn)在一次函數(shù)的圖象上,則稱為的中雅函數(shù),如:是的中雅函數(shù).
(1)判斷二次函數(shù)是否為一次函數(shù)的中雅函數(shù),并說(shuō)明理由;
(2)若關(guān)于的一次函數(shù)的中雅函數(shù)與軸兩個(gè)交點(diǎn)間的距離為,求直線與坐標(biāo)軸所圍三角形的面積;
(3)已知關(guān)于的一次函數(shù)的中雅函數(shù)為,與平行的直線交中雅函數(shù)的圖象于、兩點(diǎn),若軸上有且僅有一個(gè)點(diǎn),使得,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李老師每天要騎車到離家15千米的單位上班,若將速度提高原來(lái)的,則時(shí)間可縮短15分鐘.
(1)求李老師原來(lái)的速度為多少千米/時(shí);
(2)李老師按照原來(lái)的速度騎車到途中的A地,發(fā)現(xiàn)公文包忘在家里,他立即提速1倍回到家里取公文包(其他時(shí)間忽略不計(jì)),并且以返回時(shí)的速度趕往單位,若李老師到單位的時(shí)間不超過(guò)平時(shí)到校的時(shí)間,求A地距家最多多少千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,BC∥AD,BC=AD,點(diǎn)E為AD的中點(diǎn),點(diǎn)F為AE的中點(diǎn),AC⊥CD,連接BE、CE、CF.
(1)判斷四邊形ABCE的形狀,并說(shuō)明理由;
(2)如果AB=4,∠D=30°,點(diǎn)P為BE上的動(dòng)點(diǎn),求△PAF的周長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在直角坐標(biāo)系中,平行四邊形OABC的頂點(diǎn)A,C坐標(biāo)分別為A(2,0),C(-1,2),反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)B (m≠0)
(1)求出反比例函數(shù)的解析式
(2)將OABC沿著x軸翻折,點(diǎn)C落在點(diǎn)D處,做出點(diǎn)D并判斷點(diǎn)D是否在反比例函數(shù)的圖象上
(3)在x軸是否存在一點(diǎn)P使△OCP為等腰三角形,若存在,寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某賓館有若干間標(biāo)準(zhǔn)房,當(dāng)標(biāo)準(zhǔn)房的價(jià)格為元時(shí),每天入住的國(guó)間數(shù)為間,經(jīng)市場(chǎng)調(diào)查表明,該賓館每間標(biāo)準(zhǔn)房的價(jià)格在元之間(含元,元)浮動(dòng)時(shí),每天人住的房間數(shù)(間)與每間標(biāo)準(zhǔn)房的價(jià)格(元)的數(shù)據(jù)如下表:
(元) | …… | 190 | 200 | 210 | 220 | …… |
(元) | …… | 65 | 60 | 55 | 50 | …… |
(1)根據(jù)所給數(shù)據(jù)在坐標(biāo)系中描出相應(yīng)的點(diǎn),并畫(huà)出圖象.
(2)猜想(1)中的圖象是什么函數(shù)的圖象,求關(guān)于的函數(shù)表達(dá)式,并寫出自變量的取值范圍.
(3)設(shè)客房的日營(yíng)業(yè)額為W (元).若不考慮其他因素,問(wèn)賓館標(biāo)準(zhǔn)房的價(jià)格定為多少元時(shí),客房的日營(yíng)業(yè)額最大?最大為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,頂點(diǎn)坐標(biāo)分別為:.線段的端點(diǎn)坐標(biāo)為.
線段先向 平移 個(gè)單位,再向 平移_ 個(gè)單位與線段重合;
將繞點(diǎn)旋轉(zhuǎn)后得到的使的對(duì)應(yīng)邊為直接寫出點(diǎn)的坐標(biāo);
寫出點(diǎn)在旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax+bx+c的圖象如圖所示,以下結(jié)論:①b>4ac;②b+2a<0;③當(dāng)x<-,y隨x的增大而增大;④a-b+c<0中,正確的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com