【題目】如圖,在△ABC中,AB=AC,BAC=45°,ADBC于點D,BEAC于點E,且與AD交于點F.G是邊AB的中點,連接EGAD于點H.

(1)求證:△AEF≌△BEC;

2)求證:CD=AF;

(3)若BD=2,求AH的長.

【答案】(1)(2)見解析;(3)

【解析】試題分析:(1)根據(jù)證得結(jié)合 可證得答案;
(2),,根據(jù)即可得證.
(3)連接BH,根據(jù)垂直平分線的性質(zhì)和勾股定理即可得出答案.

試題解析:1

中,

ASA);

2,

3)連接BH,

G是邊AB的中點,

EG垂直平分AB,

∴∠5=6=22.5°,

中,由勾股定理得;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖是由一些火柴棒搭成的圖案:

(1)擺第①個圖案用 根火柴棒,擺第②個圖案用 根火柴棒,擺第③個圖案用 根火柴棒.

(2)按照這種方式擺下去,擺第n個圖案用多少根火柴棒?

(3)計算一下擺121根火柴棒時,是第幾個圖案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,長方形ABCD的四個頂點分別為(1,1),(1,2),(-2,2),(-2,1).對該長方形及其內(nèi)部的每一個點都進(jìn)行如下操作:把每個點的橫坐標(biāo)都乘以同一個實數(shù)a,縱坐標(biāo)都乘以3,再將得到的點向右平移mm>0)個單位,向下平移2個單位,得到長方形ABCD及其內(nèi)部的點,其中點A,B,C,D的對應(yīng)點分別為A,B,CD.

(1)點A的橫坐標(biāo)為__________(用含a,m的式子表示).

(2)A的坐標(biāo)為(3,1),C的坐標(biāo)為(-3,4),

①求a,m的值;

②若對長方形ABCD內(nèi)部(不包括邊界)的點E(0,y)進(jìn)行上述操作后,得到的對應(yīng)點E仍然在長方形ABCD內(nèi)部(不包括邊界),求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與直線y= x﹣3交于A、B兩點,其中點A在y軸上,點B坐標(biāo)為(﹣4,﹣5),點P為y軸左側(cè)的拋物線上一動點,過點P作PC⊥x軸于點C,交AB于點D.

(1)求拋物線的解析式;
(2)以O(shè),A,P,D為頂點的平行四邊形是否存在?如存在,求點P的坐標(biāo);若不存在,說明理由.
(3)當(dāng)點P運動到直線AB下方某一處時,過點P作PM⊥AB,垂足為M,連接PA使△PAM為等腰直角三角形,請直接寫出此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y1=x+1的圖象與y軸交于點A,一次函數(shù)y2=kx+b的圖象經(jīng)過點B0,3),且分別與x軸及y1=x+1的圖象交于點C,D,點D的橫坐標(biāo)為

(1)求k,b的值;

(2)當(dāng)x_____時,y20;

3)若在一次函數(shù)y1=x+1的圖象上有一點En,將點E向右平移2個單位后,得對應(yīng)點E',判斷點E'是否在一次函數(shù)y2=kx+b的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某化工廠從2008年開始節(jié)能減排,控制二氧化硫的排放,圖分別是該廠年二氧化硫排放量單位:噸的兩幅不完整的統(tǒng)計圖,根據(jù)圖中信息回答下列問題.

該廠年二氧化硫排放總量是______ 噸;這四年平均每年二氧化硫排放量是______

把圖中折線圖補充完整.

年二氧化硫的排放量對應(yīng)扇形的圓心角是______ 度,2011年二氧化硫的排放量占這四年排放總量的百分比是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+b的頂點坐標(biāo)為(0,﹣1),且經(jīng)過點A(﹣2,0).
(1)求拋物線的解析式;
(2)若將拋物線y=ax2+b中在x軸下方的圖象沿x軸翻折到x軸上方,x軸上方的圖象保持不變,就得到了函數(shù)y=|ax2+b|圖象上的任意一點P,直線l是經(jīng)過(0,1)且平行與x軸的直線,過點P作直線l的垂線,垂足為D,猜想并探究:PO與PD的差是否為定值?如果是,請求出此定值;如果不是,請說明理由. (注:在解題過程中,如果你覺得有困難,可以閱讀下面的材料)
附閱讀材料:
① 在平面直角坐標(biāo)系中,若A、B兩點的坐標(biāo)分別為A(x1 , y1),B(x2 , y2),則A,B兩點間的距離為|AB|= ,這個公式叫兩點間距離公式.
例如:已知A,B兩點的坐標(biāo)分別為(﹣1,2),(2,﹣2),則A,B兩點間的距離為|AB|= =5.
② 因式分解:x4+2x2y2+y4=(x2+y22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)下列圖形中,圖(a)是正方體木塊,把它切去一塊,得到如圖(b)(c)(d)(e)的木塊.

1)我們知道,圖(a)的正方體木塊有8個頂點、12條棱、6個面,請你將圖(b)、(c)、(d)、(e)中木塊的頂點數(shù)、棱數(shù)、面數(shù)填入下表;

2)上表,各種木塊的頂點數(shù)、棱數(shù)、面數(shù)之間的數(shù)量關(guān)系可以歸納出一定的規(guī)律,請你試寫出頂點數(shù)x、棱數(shù)y、面數(shù)z之間的數(shù)量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列解題過程的空白處填上適當(dāng)?shù)膬?nèi)容(推理的理由或數(shù)學(xué)表達(dá)式)

如圖,在ABC中,已知∠ADEB1=2,FGAB于點G.

求證CDAB.

證明:∵∠ADEB(已知),

),

DEBC(已證),

),

又∵∠1=2(已知),

),

CDFG ),

(兩直線平行同位角相等),

FGAB(已知),

∴∠FGB=90°(垂直的定義).

即∠CDBFGB=90°,

CDAB. (垂直的定義).

查看答案和解析>>

同步練習(xí)冊答案