【題目】如圖,已知直線PA交⊙O于A、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過(guò)C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若DC+DA=6,⊙O的直徑為10,求AB的長(zhǎng)度.
【答案】
(1)證明:連接OC,
∵OA=OC,
∴∠OCA=∠OAC,
∵AC平分∠PAE,
∴∠DAC=∠CAO,
∴∠DAC=∠OCA,
∴PB∥OC,
∵CD⊥PA,
∴CD⊥OC,CO為⊙O半徑,
∴CD為⊙O的切線
(2)解:過(guò)O作OF⊥AB,垂足為F,
∴∠OCD=∠CDA=∠OFD=90°,
∴四邊形DCOF為矩形,
∴OC=FD,OF=CD.
∵DC+DA=6,
設(shè)AD=x,則OF=CD=6﹣x,
∵⊙O的直徑為10,
∴DF=OC=5,
∴AF=5﹣x,
在Rt△AOF中,由勾股定理得AF2+OF2=OA2.
即(5﹣x)2+(6﹣x)2=25,
化簡(jiǎn)得x2﹣11x+18=0,
解得x1=2,x2=9.
∵CD=6﹣x大于0,故x=9舍去,
∴x=2,
從而AD=2,AF=5﹣2=3,
∵OF⊥AB,由垂徑定理知,F(xiàn)為AB的中點(diǎn),
∴AB=2AF=6.
【解析】(1)根據(jù)切線的判定方法只要得到CD⊥OC即可;根據(jù)等角對(duì)等邊,得到∠OCA=∠OAC,根據(jù)角平分線定義AC平分∠PAE,得到∠DAC=∠CAO,∠DAC=∠OCA,得到PB∥OC,由CD⊥PA,得到CD⊥OC,即CD為⊙O的切線;(2)由輔助線得到四邊形DCOF為矩形,根據(jù)矩形的性質(zhì)得到OC=FD,OF=CD,因?yàn)椤袿的直徑為10,求出DF=OC,AF,在Rt△AOF中,由勾股定理得AF2+OF2=OA2,,從而求出AD,AF的值,由OF⊥AB,由垂徑定理知,F(xiàn)為AB的中點(diǎn),求出AB=2AF即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的不等式組整數(shù)解為1、2,如果把適合這個(gè)不等式組的整數(shù)組成有序數(shù)對(duì),那么對(duì)應(yīng)在平面直角坐標(biāo)系上的點(diǎn)共有的個(gè)數(shù)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2 400 m,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4 min,在整個(gè)步行過(guò)程中,甲、乙兩人的距離y(m)與甲出發(fā)的時(shí)間t(min)之間的關(guān)系如圖所示,以下結(jié)論:①甲步行的速度為60 m/min;②乙走完全程用了32 min;③乙用16 min追上甲;④乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)還有300 m,其中正確的結(jié)論有______(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,BE=CE,MN=1,線段MN的兩端點(diǎn)在CD、AD上滑動(dòng),當(dāng)DM為( )時(shí),△ABE與以D、M、N為頂點(diǎn)的三角形相似.
A.
B.
C. 或
D. 或
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過(guò)點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過(guò)點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當(dāng)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明你的理由;
(3)若D為AB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?請(qǐng)說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】AB為⊙O的直徑,點(diǎn)C、D在⊙O上.若∠ABD=42°,則∠BCD的度數(shù)是( )
A.122°
B.128°
C.132°
D.138°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,
下列結(jié)論:
①4ac<b2;
②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探索研究:已知:△ABC和△CDE都是等邊三角形.
(1)如圖1,若點(diǎn)A、C、E在一條直線上時(shí),我們可以得到結(jié)論:線段AD與BE的數(shù)量關(guān)系為: ,線段AD與BE所成的銳角度數(shù)為 °;
(2)如圖2,當(dāng)點(diǎn)A、C、E不在一條直線上時(shí),請(qǐng)證明(1)中的結(jié)論仍然成立;
靈活運(yùn)用:
如圖3,某廣場(chǎng)是一個(gè)四邊形區(qū)域ABCD,現(xiàn)測(cè)得:AB=60m,BC=80m,且∠ABC=30°,∠DAC=∠DCA=60°,試求水池兩旁B、D兩點(diǎn)之間的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com