邊長(zhǎng)為1的正三角形ABC的中心O,以O(shè)為圓心,在正三角形內(nèi)畫一個(gè)圓,(⊙O),再作⊙O1,⊙O2,⊙O3,分別與正三角形的兩邊及⊙O都相切,試求,這四個(gè)面積總和的最大值與最小值,并指出面積總和取最值時(shí)對(duì)應(yīng)的⊙O的半徑.
設(shè)圓O的半徑為x,已知圓O1,圓O2,圓O3的半徑相等,設(shè)其為z,由AO1=2z,AO=
3
3
,
得:3z+x=
3
3

∴z=
3
9
-
x
3
,
設(shè)四個(gè)圓面積之和為y,則y=πx2+3π(
3
9
-
x
3
)
2
=
3
(x-
3
12
)
2
+
π
12

不難得到x的取值范圍為
3
3
-3
3
-1
4
≤x≤
3
6
,
∴x=
3
12
時(shí),ymin=
π
12
,x=
3
6
時(shí),ymax=
π
9
,
故當(dāng)圓O的半徑為
3
12
時(shí),四圓面積和取最小值
π
12

當(dāng)圓O的半徑為
3
6
時(shí),四圓面積和取最大值
π
9
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,用半徑R=8mm,r=5mm的鋼球測(cè)量口小里大的內(nèi)孔的直徑D,測(cè)得鋼球頂點(diǎn)與孔口平面的距離分別為a=12mm,b=8mm,計(jì)算出內(nèi)孔直徑D的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC中,cosB=
3
2
,∠C=45°,AB=8,以點(diǎn)B為圓心4為半徑的⊙B與以點(diǎn)C為圓心的⊙C相離,則⊙C的半徑不可能為( 。
A.5B.6C.7D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在校運(yùn)動(dòng)會(huì)上,三位同學(xué)用繩子將四根同樣大小的接力棒分別按橫截面如圖(1),(2),(3)所示的方式進(jìn)行捆綁,三個(gè)圖中的四個(gè)圓心的連線(虛線)分別構(gòu)成菱形、正方形、菱形,如果把三種方式所用繩子的長(zhǎng)度分別用x,y,z來表示,則( 。
A.x<y<zB.X=y<zC.x>y>zD.x=y=z

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在以O(shè)為圓心的兩個(gè)同心圓中,大圓的弦AB是小圓的切線,P為切點(diǎn),設(shè)AB=12,則兩圓構(gòu)成圓環(huán)面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O1與⊙O2內(nèi)切于點(diǎn)A,D為⊙O2上一點(diǎn),過點(diǎn)D作⊙O2的切線交⊙O1于F、E,連接AF,AE,分別交⊙O2于B,C,連接BC,AD,BC與AD相交于點(diǎn)P,延長(zhǎng)AD交⊙O1于Q.
(1)求證:BCEF;
(2)求證:FD•PC=AP•DQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點(diǎn)P是反比例函數(shù)y=
2
x
在第一象限內(nèi)圖象上的一個(gè)動(dòng)點(diǎn),⊙P的半徑為1,當(dāng)⊙P與坐標(biāo)軸相交時(shí),點(diǎn)P的橫坐標(biāo)x的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知C是以AB為直徑的半圓上的一點(diǎn),AB=10,CD⊥AB于D點(diǎn),以AD、DB為直徑畫兩個(gè)半圓,EF是這兩個(gè)半圓的外公切線,E、F為切點(diǎn).
(1)求證:CD=EF;
(2)求證:四邊形EDFC是矩形;
(3)若DB=|m|,則m是使關(guān)于x的方程x2+2(m-1)x+m2+3=0的兩個(gè)實(shí)根的平方和為22的實(shí)數(shù)值,求矩形EDFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,施工工地的水平地面上,有三根外徑都是1米的水泥管,兩兩相切地堆放在一起,則其最高點(diǎn)到地面的距離是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案