【題目】如圖,點,分別在直線和上,若,,可以證明.請完成下面證明過程中的各項“填空”.
證明:∵(理由:______.)
______(對頂角相等)
∴,∴(理由:______)
∴______(兩直線平行,同位角相等)
又∵,∴,
∴______(內(nèi)錯角相等,兩直線平行)
∴(理由:______)
【答案】見解析.
【解析】
根據(jù)對頂角相等推知同位角∠EHF=∠DGF,從而證得兩直線DB∥EC;然后由平行線的性質(zhì)及已知得到內(nèi)錯角∠DBA=∠D,即可根據(jù)平行線的判定定理推知兩直線DF∥AC;最后由平行線的性質(zhì)(兩直線平行,內(nèi)錯角相等)證得∠A=∠F.
解:∵∠AGB=∠EHF(理由:已知),∠AGB=∠DGF(對頂角相等),
∴∠EHF=∠DGF,
∴DB∥EC(理由:同位角相等,兩直線平行),
∴∠C=∠DBA ( 兩直線平行,同位角相等),
又∵∠C=∠D(已知),
∴∠DBA=∠D(等量代換),
∴DF∥AC(內(nèi)錯角相等,兩直線平行),
∴∠A=∠F(理由:兩直線平行,內(nèi)錯角相等).
故答案為:已知;∠DGF;同位角相等,兩直線平行;C;AC;兩直線平行,內(nèi)錯角相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個工程隊計劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊每天比乙工程隊每天多修路0.5千米,乙工程隊單獨完成修路任務(wù)所需天數(shù)是甲工程隊單獨完成修路任務(wù)所需天數(shù)的1.5倍.
(1)求甲、乙兩個工程隊每天各修路多少千米?
(2)若甲工程隊每天的修路費用為0.5萬元,乙工程隊每天的修路費用為0.4萬元,要使兩個工程隊修路總費用不超過5.2萬元,甲工程隊至少修路多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P是直線AC下方拋物線上的動點.
(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當(dāng)四邊形AECP的面積最大時,求點P的坐標(biāo);
(3)當(dāng)點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一條直線過點,且與拋物線交于A、B兩點,其中點A的橫坐標(biāo)是-2.
⑴求這條直線的函數(shù)關(guān)系式及點B的坐標(biāo) ;
⑵在軸上是否存在點C,使得ABC是直角三角形?若存在,求出點C的坐標(biāo),若不存在,請說明理由;
⑶.過線段AB上一點P,作PM∥軸,交拋物線于點M,點M在第一象限;點,當(dāng)點M的橫坐標(biāo)為何值時,MN+3MP的長度最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AD平分∠BAC,AD⊥BC,垂足為D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為E.
(1)求證:四邊形ADCE是矩形;
(2)當(dāng)△ABC滿足什么條件時,四邊形ADCE是正方形?給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司組織退休職工組團前往某景點游覽參觀,參加人員共70人.旅游景點規(guī)定:①門票每人60元,無優(yōu)惠;②上山游覽必須乘坐景點安排的觀光車游覽,觀光車有小型車和中型車兩類,分別可供4名和11名乘客乘坐;且小型車每輛收費60元,中型車每人收費10元.若70人正好坐滿每輛車且參觀游覽的總費用不超過5000元,問景點安排的小型車和中型車各多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,AE平分∠BAD交CD于點E,AE的垂直平分線交AB于點G,交AE于點F.若AD=4cm,BG=1cm,則AB=_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究如圖,直線的解析式為,且與軸交于點,直線經(jīng)過點和點,直線,交于點,連接.
(1)求直線的解析式;
(2)求證:是等腰三角形;
(3)求的面積;
(4)探究在直線上是否存在異于點的另一點,使得與的面積相等,若存在,請直接寫出點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com