已知:在如圖1所示的平面直角坐標系xOy中,A、C兩點的坐標分別為A(4,2),C(n,-2)(其中n>0),點B在x軸的正半軸上.動點P從點O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點C移動,當點P與點C重合時停止運動.設點P移動的路徑的長為l,△POC的面積為S,S與l的函數(shù)關系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.

(1)結合以上信息及圖2填空:圖2中的m=______;
(2)求B、C兩點的坐標及圖2中OF的長.

解:(1)根據(jù)圖形可得:當點P運動到點A時,△POC的面積為8,
∵OA==2
∴P移動的路徑的長l=2,
∴m的值為2
(2)∵圖1中四邊形ODEF是等腰梯形,點D的坐標為D(m,8),
∴yE=yD=8,此時圖2中點O運動到與點B重合,
∵點B在x軸上,
∴S△POC=OB×2=8,
解得:OB=8,
即點B的坐標為(8,0),
∵點P在AB上運動時,△POC的面積不變,
∴可得OC∥AB,
設直線AB的解析式為y=kx+b,
將A、B的坐標代入可得:,
解得:
∴直線AB的解析式為y=-x+4,
∴直線OC的解析式為y=-x,
∵點C的縱坐標為-2,
∴點C的橫坐標為4,
∴點C的坐標為(4,-2),
∴OF=l=OA+AB+BC=2+2+2=6
分析:(1)利用當P點運動到A點時,△POC的面積為12,求出斜邊AO即可;
(2)圖1中四邊形ODEF是等腰梯形,點D的坐標為D(m,8),得出yE=yD=8,此時圖2中點P運動到與點B重合,根據(jù)點P在AB上運動時△POC的面積不變,可得AB與OC平行,求出直線AB的解析式,可得出直線OC的解析式,再由點C縱坐標為-2,可確定點C的坐標,繼而求出OF的長度.
點評:本題考查了動點問題的函數(shù)圖象,涉及了等腰梯形的性質、平行線的性質及一次函數(shù)的知識,綜合性較強,解答本題關鍵是將兩圖中的點對應起來,此題難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:在如圖1所示的銳角三角形ABC中,CH⊥AB于點H,點B關于直線CH的對稱點為D,AC邊上一點E滿足∠EDA=∠A,直線DE交直線CH于點F.
(1)求證:BF∥AC;
(2)若AC邊的中點為M,求證:DF=2EM;
(3)當AB=BC時(如圖2),在未添加輔助線和其它字母的條件下,找出圖2中所有與BE相等的線段,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•徐州模擬)已知:在如圖1所示的平面直角坐標系xOy中,A、C兩點的坐標分別為A(4,2),C(n,-2)(其中n>0),點B在x軸的正半軸上.動點P從點O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點C移動,當點P與點C重合時停止運動.設點P移動的路徑的長為l,△POC的面積為S,S與l的函數(shù)關系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.
(1)結合以上信息及圖2填空:圖2中的m=
2
5
2
5

(2)求B、C兩點的坐標及圖2中OF的長;
(3)若OM是∠AOB的角平分線,且點G與點H分別是線段AO與射線OM上的兩個動點,直接寫出HG+AH的最小值,請在圖3中畫出示意圖并簡述理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:在如圖1所示的平面直角坐標系xOy中,A、C兩點的坐標分別為A(4,2),C(n,-2)(其中n>0),點B在x軸的正半軸上.動點P從點O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點C移動,當點P與點C重合時停止運動.設點P移動的路徑的長為l,△POC的面積為S,S與l的函數(shù)關系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.

(1)結合以上信息及圖2填空:圖2中的m=
2
5
2
5
;
(2)求B、C兩點的坐標及圖2中OF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:在如圖1所示的平面直角坐標系xOy中,A,C兩點的坐標分別為A(2,3),C(n,-3)(其中n>0),點B在x軸的正半軸上.動點P從點O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點C移動,當點P與點C重合時停止運動.設點P移動的路徑的長為x,△POC的面積為S,S與x的函數(shù)關系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.
(1)求B,C兩點的坐標及圖2中OF的長;
(2)在圖1中,當動點P恰為經過O,B兩點的拋物線W的頂點時,
①求此拋物線W的解析式;
②若點Q在直線y=-1上方的拋物線W上,坐標平面內另有一點R,滿足以B,P,Q,R四點為頂點的四邊形是菱形,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:在如圖1所示的平面直角坐標系xOy中,A,C兩點的坐標分別為A(2,3),C(n,-3)(其中n>0),點B在x軸的正半軸上.動點P從點O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點C移動,當點P與點C重合時停止運動.設點P移動的路徑的長為l,△POC的面積為S,S與l的函數(shù)關系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.

(1)結合以上信息及圖2填空:圖2中的m=
13
13

(2)求B,C兩點的坐標及圖2中OF的長;
(3)在圖1中,當動點P恰為經過O,B兩點的拋物線W的頂點時,
①求此拋物線W的解析式;
②若點Q在直線y=-1上方的拋物線W上,坐標平面內另有一點R,滿足以B,P,Q,R四點為頂點的四邊形是菱形,求點Q的坐標.

查看答案和解析>>

同步練習冊答案