【題目】如圖,拋物線y=ax2+bx﹣3經(jīng)過點(diǎn)A(2,﹣3),與x軸負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=3OB.
(1)求拋物線的解析式;
(2)點(diǎn)D在y軸上,且∠BDO=∠BAC,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對稱軸上,是否存在以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由.
【答案】
(1)
解:由y=ax2+bx﹣3得C(0.﹣3),
∴OC=3,
∵OC=3OB,
∴OB=1,
∴B(﹣1,0),
把A(2,﹣3),B(﹣1,0)代入y=ax2+bx﹣3得 ,
∴ ,
∴拋物線的解析式為y=x2﹣2x﹣3
(2)
解:設(shè)連接AC,作BF⊥AC交AC的延長線于F,
∵A(2,﹣3),C(0,﹣3),
∴AF∥x軸,
∴F(﹣1,﹣3),
∴BF=3,AF=3,
∴∠BAC=45°,
設(shè)D(0,m),則OD=|m|,
∵∠BDO=∠BAC,
∴∠BDO=45°,
∴OD=OB=1,
∴|m|=1,
∴m=±1,
∴D1(0,1),D2(0,﹣1)
(3)
解:設(shè)M(a,a2﹣2a﹣3),N(1,n),
①以AB為邊,則AB∥MN,AB=MN,如圖2,過M作ME⊥對稱軸y于E,AF⊥x軸于F,
則△ABF≌△NME,
∴NE=AF=3,ME=BF=3,
∴|a﹣1|=3,
∴a=3或a=﹣2,
∴M(4,5)或(﹣2,11);
②以AB為對角線,BN=AM,BN∥AM,如圖3,
則N在x軸上,M與C重合,
∴M(0,﹣3),
綜上所述,存在以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形,M(4,5)或(﹣2,11)或(0,﹣3).
【解析】(1)待定系數(shù)法即可得到結(jié)論;(2)連接AC,作BF⊥AC交AC的延長線于F,根據(jù)已知條件得到AF∥x軸,得到F(﹣1,﹣3),設(shè)D(0,m),則OD=|m|即可得到結(jié)論;(3)設(shè)M(a,a2﹣2a﹣3),N(1,n),①以AB為邊,則AB∥MN,AB=MN,如圖2,過M作ME⊥對稱軸y于E,AF⊥x軸于F,于是得到△ABF≌△NME,證得NE=AF=3,ME=BF=3,得到M(4,5)或(﹣2,11);②以AB為對角線,BN=AM,BN∥AM,如圖3,則N在x軸上,M與C重合,于是得到結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識,掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn),以及對二次函數(shù)的性質(zhì)的理解,了解增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在一條筆直的道路上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,他們分別以不同的速度勻速行駛,已知甲先出發(fā)6分鐘后,乙才出發(fā),在整個過程中,甲、乙兩人的距離y(千米)與甲出發(fā)的時間x(分)之間的關(guān)系如圖所示,當(dāng)乙到達(dá)終點(diǎn)A時,甲還需分鐘到達(dá)終點(diǎn)B.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校學(xué)生對《最強(qiáng)大腦》、《朗讀者》、《中國詩詞大會》、《出彩中國人》四個電視節(jié)目的喜愛情況,隨機(jī)抽取了x名學(xué)生進(jìn)行調(diào)查統(tǒng)計(要求每名學(xué)生選出并且只能選出一個自己最喜愛的節(jié)目),并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖表:
學(xué)生最喜愛的節(jié)目人數(shù)統(tǒng)計表
節(jié)目 | 人數(shù)(名) | 百分比 |
最強(qiáng)大腦 | 5 | 10% |
朗讀者 | 15 | b% |
中國詩詞大會 | a | 40% |
出彩中國人 | 10 | 20% |
根據(jù)以上提供的信息,解答下列問題:
(1)x= , a= , b=;
(2)補(bǔ)全上面的條形統(tǒng)計圖;
(3)若該校共有學(xué)生1000名,根據(jù)抽樣調(diào)查結(jié)果,估計該校最喜愛《中國詩詞大會》節(jié)目的學(xué)生有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠ACB=90°,AC=BC,D為AB中點(diǎn),點(diǎn)E,F(xiàn)分別在AC,BC邊上,且AE=CF.
(1)求證:DE=DF;
(2)連接EF,求∠DEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動,第1次從原點(diǎn)運(yùn)動到點(diǎn)(1,1),第2次接著運(yùn)動到點(diǎn)(2,0),第3次接著運(yùn)動到點(diǎn)(3,2),…,按這樣的運(yùn)動規(guī)律,經(jīng)過第2015次運(yùn)動后,動點(diǎn)P的坐標(biāo)是( )
A.(2015,0)
B.(2015,1)
C.(2015,2)
D.(2016,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店購進(jìn)一批甲、乙兩種款型時尚T恤衫,甲種款型共用了7800元,乙種款型共用了6400元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進(jìn)價比乙種款型每件的進(jìn)價少30元.
(1)甲、乙兩種款型的T恤衫各購進(jìn)多少件?
(2)商店進(jìn)價提高60%標(biāo)價銷售,銷售一段時間后,甲款型全部售完,乙款型剩余一半,商店決定對乙款型按標(biāo)價的五折降價銷售,很快全部售完,求售完這批T恤衫商店共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為的等邊三角形的頂點(diǎn)分別在邊,上當(dāng)在邊上運(yùn)動時,隨之在邊上運(yùn)動,等邊三角形的形狀保持不變,運(yùn)動過程中,點(diǎn)到點(diǎn)的最大距離為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費(fèi)方案.
甲公司方案:每月的養(yǎng)護(hù)費(fèi)用y(元)與綠化面積x(平方米)是一次函數(shù)關(guān)系,如圖所示.
乙公司方案:綠化面積不超過1000平方米時,每月收取費(fèi)用5500元;綠化面積超過1000平方米時,每月在收取5500元的基礎(chǔ)上,超過部分每平方米收取4元.
(1)求如圖所示的y與x的函數(shù)解析式;(不要求寫取值范圍)
(2)如果某學(xué)校目前的綠化面積是1200平方米.試通過計算說明:選擇哪家公司的服務(wù),每月的綠化養(yǎng)護(hù)費(fèi)用較少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com