【題目】如圖(1),一架梯子長為5m,斜靠在一面墻上,梯子底端離墻3m.如果梯子的頂端下滑了1m(如圖(2)),那么梯子的底端在水平方向上滑動的距離為( )

A.1mB.大于1m

C.不大于1mD.介于0.5m1m之間

【答案】B

【解析】

利用墻與地面為直角,那么利用勾股定理得到梯子斜靠墻不滑時,地面到梯子高端的距離,從而進一步解得梯子滑動時所在直角三角形的底邊,從而求得梯子底部水平滑動的距離.

梯子長為5米,梯子離墻3米,由所在直角三角形另一邊為:.

梯子下滑后梯子高端距地面為54=1.

由所在直角三角形中梯子低端與墻距離CD.

梯子的底端在水平方向上滑動的距離為BD=.

梯子的底端在水平方向上滑動的距離為大于1m.

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:

反比例函數(shù)y=(k>0)第一象限內(nèi)的圖象如圖1所示,點P、R是雙曲線上不同的兩點,過點P、R分別做PAy軸于點A,RCx軸于點C,兩垂線交點為B.

(1)問題提出:線段PB:PABR:RC有怎樣的關系?

問題解決:設點PA=n,PB=m,則點P的坐標為(n,),點R的坐標為(m+n,),AO=BC=,RC=,BR=,

BR:RC=,

PB:PA=,

PB:PA=BR:RC.

問題應用:

(2)利用上面的結(jié)論解決問題:

①如圖1,如果BR=6,CR=3,AP=4,BP=   

②如圖2,如果直線PR的關系式y2=﹣x+3,與x軸交于點D,與y軸交于點E,若ED=3PR,求出k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,RtOAB的頂點Ax軸的正半軸上.頂點B的坐標為(3,),點C的坐標為(1,0),且∠AOB=30°P為斜邊OB上的一個動點,則PA+PC的最小值為(  。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列語句正確的有( )句

正方形都相似;有一個角對應相等的菱形相似;

有一個角相等的兩個等腰三角形相似;如果一個三角形有兩個角分別為,另一個三角形有兩個角分別為,那么這兩個三角形可能不相似.

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=x +my=x +n的圖象都是經(jīng)過點A(2,0),且與y軸分別交于BC兩點.

(1)直接寫出B、C兩點的坐標B: ;C:

(2)ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是甲、乙兩家運輸公司規(guī)定每位旅客攜帶行李的費用與所帶行李質(zhì)量之間的關系圖.

(1)由圖可知,行李質(zhì)量只要不超過______kg,甲公司就可免費攜帶,如果超過了規(guī)定的質(zhì)量,則每超過1 kg要付運費_______元;

(2)解釋圖中點M所表示的實際意義;

(3)若設旅客攜帶的行李質(zhì)量為x(kg),所付的行李費是y(元),請分別寫出y甲與y乙(元)隨x(kg)之間變化的關系式;

(4)若你準備攜帶45 kg的行李出行,在甲、乙兩家公司中你會選擇哪一家?應付行李費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,平行四邊形ABCD中,M、N分別為ABCD的中點.

(1)求證:四邊形AMCN是平行四邊形;

(2)若AC=BC=5,AB=6,求四邊形AMCM的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1D是邊長為4㎝的等邊△ABC的邊AB上的一點,DQAB交邊BC于點Q,RQBC交邊AC于點R,RPAC交邊AB于點E,交QD的延長線于點P.

1 2

①請說明△PQR是等邊三角形的理由;

②若BD=1.3㎝,則AE=_______㎝(填空)

③如圖2,當點E恰好與點D重合時,求出BD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DABCBC邊上的一點,AD=BD,ADC=80°.

(1)求∠B的度數(shù);

(2)若∠BAC=70°,判斷ABC的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案