【題目】手機(jī)上常見(jiàn)的wifi標(biāo)志如圖所示,它由若干條圓心相同的圓弧組成,其圓心角為90°,最小的扇形半徑為1.若每?jī)蓚(gè)相鄰圓弧的半徑之差為1,由里往外的陰影部分的面積依次記為S1、S2、S3…,則S1+S2+S3+…+S20=

【答案】195π
【解析】解:S1= π12= π; S2= π(32﹣22)= π+π;
S3= π(52﹣42)= π+2π;

S20= π+19π;
∴S1+S2+S3+…+S20=5π+(1+2+3+…+19)π=195π.
故答案為195π.
先利用扇形的面積公式分別計(jì)算出S1= π;S2= π+π;S3= π+2π,則利用此規(guī)律得到S20= π+19π,然后把它們相加即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AB=AC,射線APABC的外側(cè),點(diǎn)B關(guān)于AP的對(duì)稱點(diǎn)為D,連接CD交射線AP于點(diǎn)E,連接BE.

(1)根據(jù)題意補(bǔ)全圖形;

(2)求證:CD=EB+EC;

(3)求證:∠ABE=ACE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論: ①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一輛汽車在直線形的公路AB上由AB行駛C,D分別是位于公路AB兩側(cè)的村莊.

(1)該汽車行駛到公路AB上的某一位置C時(shí)距離村莊C最近,行駛到D位置時(shí)距離村莊D最近,請(qǐng)?jiān)诠?/span>AB上作出C,D的位置(保留作圖痕跡)

(2)當(dāng)汽車從A出發(fā)向B行駛時(shí),在哪一段路上距離村莊C越來(lái)越遠(yuǎn),而離村莊D越來(lái)越近?(只敘述結(jié)論,不必說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的方程x2 +cosα=0有兩個(gè)相等的實(shí)數(shù)根,則銳角α為(
A.30°
B.45°
C.60°
D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C=90°,B=30°,邊AB的垂直平分線DEAB于點(diǎn)E,交BC于點(diǎn)D.CD=3,則BC的長(zhǎng)為(

A. 6 B. 9 C. 6 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司保安部去商店購(gòu)買同一品牌的應(yīng)急燈和手電筒,查看定價(jià)后發(fā)現(xiàn),購(gòu)買一個(gè)應(yīng)急燈和5個(gè)手電筒共需50元,購(gòu)買3個(gè)應(yīng)急燈和2個(gè)手電筒共需85元.

(1)求出該品牌應(yīng)急燈、手電筒的定價(jià)分別是多少元?

(2)經(jīng)商談,商店給予該公司購(gòu)買一個(gè)該品牌應(yīng)急燈贈(zèng)送一個(gè)該品牌手電筒的優(yōu)惠,如果該公司需要手電筒的個(gè)數(shù)是應(yīng)急燈個(gè)數(shù)的2倍還多8個(gè),且該公司購(gòu)買應(yīng)急燈和手電筒的總費(fèi)用不超過(guò)670元,那么該公司最多可購(gòu)買多少個(gè)該品牌應(yīng)急燈?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班抽取6名同學(xué)參加體能測(cè)試,成績(jī)?nèi)缦拢?5,95,85,80,80,85.下列表述錯(cuò)誤是( )
A.眾數(shù)是85
B.平均數(shù)是85
C.方差是20
D.極差是15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】11世紀(jì)的一位阿拉伯?dāng)?shù)學(xué)家曾提出一個(gè)“鳥兒捉魚”問(wèn)題:小溪邊長(zhǎng)著兩棵棕櫚樹,恰好隔岸相望一棵棕櫚樹高是30肘尺(肘尺是古代的長(zhǎng)度單位),另外一棵高20肘尺;兩棵棕櫚樹的樹干間的距離是50肘尺.每棵樹的樹頂上都停著一只鳥.忽然,兩只鳥同時(shí)看見(jiàn)棕櫚樹間的水面上游出一條魚,它們立刻以相同的速度飛去抓魚,并且同時(shí)到達(dá)目標(biāo).問(wèn):這條魚出現(xiàn)的地方離比較高的棕櫚樹的樹根有多遠(yuǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案