【題目】如圖,已知二次函數(shù)圖象與x軸交于A,B兩點,對稱軸為直線x=2,下列結論abc>0; 4a+b=0;若點A坐標為(1,0)則線段AB=5; 若點M(x1y1)、N(x2,y2)在該函數(shù)圖象上且滿足0<x1<1,2<x2<3y1<y2其中正確結論的序號為

A. , B. C. , D. ,

【答案】D

【解析】∵拋物線開口向下,a0對稱軸,b=4a0拋物線與y軸交點在y軸正半軸c0,abc0,故①錯誤;

由①得b=-4a,∴4a+b=0,故②正確;

若點A坐標為(1,0,因為對稱軸為x=2,B50),AB=5+1=6故③錯誤;

a0,∴橫坐標到對稱軸的距離越大函數(shù)值越小0x11,2x23, ,y1y2,故④正確

故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在正方形網格中,每個小正方形的邊長都為1個單位長度,△ABC的三個頂點的位置如圖所示,現(xiàn)將ABC平移后得△DEF,使點A的對應點為點D,點B的對應點為點E

(1)畫出△DEF

(2)連接AD、BE,則線段ADBE的關系是 ;

(3)求△DEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,DOAB于點O,連接DA交⊙O于點C,過點C作⊙O的切線交DO于點E,連接BCDO于點F.

(1)求證:CE=EF;

(2)連接AF并延長,交⊙O于點G.填空:

①當∠D的度數(shù)為   時,四邊形ECFG為菱形;

②當∠D的度數(shù)為   時,四邊形ECOG為正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點C落在處,AD于點E

(1)試判斷△BDE的形狀,并說明理由;

(2)若,求△BDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以ABC的邊AC為直徑的O恰為ABC的外接圓,ABC的平分線交O于點D,過點D作DEAC交BC的延長線于點E.

(1)求證:DE是O的切線;

(2)若AB=25,BC=,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DE⊙O的直徑,過點D⊙O的切線AD,CAD的中點,AE⊙O于點B且四邊形BCOE是平行四邊形。

(1)BC⊙O的切線嗎?若是,給出證明若不是請說明理由;

(2)⊙O半徑為1,AD的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD,若按圖中規(guī)律繼續(xù)下去,則∠1+2+n等于(  )

A. n·180° B. 2n·180° C. (n-1)·180° D. (n-1)2·180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是按規(guī)律排列的一列式子:

1個式子:

2個式子:;

3個式子:;

……

1)分別計算出這三個式子的結果;

2)請按規(guī)律寫出第2019個式子的形式(中間部分用省略號,兩端部分必須寫詳細);

3)計算第2019個式子的結果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖直線EF、CD相交于點O,OAOB,OC平分∠AOF.

(1)若∠AOE=40°,求∠BOD的度數(shù)

(2)若∠AOE=30°,請直接寫出∠BOD的度數(shù);

(3)觀察(1)(2)的結果,猜想∠AOE和∠BOD的數(shù)量關系并說明理由.

查看答案和解析>>

同步練習冊答案