【題目】疫情無情人有情,愛心捐款傳真情.疫情期間,某企業(yè)員工積極參加獻(xiàn)愛心活動,該企業(yè)率先捐款的50名員工的捐款情況統(tǒng)計如下表:
金額/元 | 50 | 100 | 200 | 500 | 100 |
人數(shù) | 6 | 17 | 14 | 8 | 5 |
則他們捐款金額的平均數(shù)、中位數(shù)、眾數(shù)分別是( 。
A.276,100,200B.276,200,100C.370,100,100D.370,200,100
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,、兩點(diǎn)關(guān)于直線對稱,直線交于點(diǎn),交另一邊于點(diǎn),且,則的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一組對角互補(bǔ)的四邊形叫做互補(bǔ)四邊形.
概念理解:
①在互補(bǔ)四邊形中,與是一組對角,若則 _
②如圖1,在中,點(diǎn)分別在邊上,且求證:四邊形是互補(bǔ)四邊形.
探究發(fā)現(xiàn):如圖2,在等腰中,點(diǎn)分別在邊上, 四邊形是互補(bǔ)四邊形,求證:.
推廣運(yùn)用:如圖3,在中,點(diǎn)分別在邊上,四邊形是互補(bǔ)四邊形,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,折疊矩形,具體操作:①點(diǎn)為邊上一點(diǎn)(不與、重合),把沿所在的直線折疊,點(diǎn)的對稱點(diǎn)為點(diǎn);②過點(diǎn)對折,折痕所在的直線交于點(diǎn)、點(diǎn)的對稱點(diǎn)為點(diǎn).
(1)求證:∽.
(2)若,.
①點(diǎn)在移動的過程中,求的最大值.
②如圖2,若點(diǎn)恰在直線上,連接,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,長方形的三個頂點(diǎn)的坐標(biāo)為,,,且軸,點(diǎn)是長方形內(nèi)一點(diǎn)(不含邊界).
(1)求,的取值范圍.
(2)若將點(diǎn)向左移動8個單位,再向上移動2個單位到點(diǎn),若點(diǎn)恰好與點(diǎn)關(guān)于軸對稱,求,的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的網(wǎng)格中,有兩個完全相同的直角三角形紙片,如果把其中一個三角形紙片先橫向平移格,再縱向平移格,就能使它的一條邊與另一個三角形紙片的一條邊重合,拼接成一個四邊形,那么的結(jié)果( )
A.只有一個確定的值B.有兩個不同的值
C.有三個不同的值D.有三個以上不同的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展以“我最喜歡的職業(yè)”為主題的調(diào)查活動,通過對學(xué)生的隨機(jī)抽樣調(diào)查得到一組數(shù)據(jù),如圖是根據(jù)這組數(shù)據(jù)繪制成的不完整統(tǒng)計圖.
(1)把折線統(tǒng)計圖補(bǔ)充完整;
(2)求出扇形統(tǒng)計圖中,公務(wù)員部分對應(yīng)的圓心角的度數(shù);
(3)若從被調(diào)查的學(xué)生中任意抽取一名,求取出的這名學(xué)生最喜歡的職業(yè)是“教師”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平直角坐標(biāo)系中,規(guī)定:拋物線的相關(guān)直線為.例如:二次函數(shù)的相關(guān)直線為.
(1)直接寫出拋物線的相關(guān)直線,并求出拋物線與其相關(guān)直線的交點(diǎn)坐標(biāo);
(2)如圖,拋物線與它的相關(guān)直線交于、兩點(diǎn).
①求拋物線的解析式;
②連結(jié),求的面積;
③作,過拋物線上一動點(diǎn)(不與、重合)作直線的平行線交于點(diǎn),若以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形,直接寫出點(diǎn)的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=∠ADC,對角線AC、BD交于點(diǎn)O,AO=BO,DE平分∠ADC交BC于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是矩形;
(2)若AB=2,求△OEC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com