【題目】問題呈現(xiàn):
(Ⅰ)如圖1,點E、F、G、H分別在矩形ABCD的邊AB、BC、CD、DA上,AE=DG,求證:2S四邊形EFGH=S矩形ABCD . (S表示面積)
(Ⅱ)實驗探究:某數(shù)學實驗小組發(fā)現(xiàn):若圖1中AH≠BF,點G在CD上移動時,上述結(jié)論會發(fā)生變化,分別過點E、G作BC邊的平行線,再分別過點F、H作AB邊的平行線,四條平行線分別相交于點A1、B1、C1、D1 , 得到矩形A1B1C1D1
如圖2,當AH>BF時,若將點G向點C靠近(DG>AE),經(jīng)過探索,發(fā)現(xiàn):2S四邊形EFGH=S矩形ABCD+S
如圖3,當AH>BF時,若將點G向點D靠近(DG<AE),請?zhí)剿鱏四邊形EFGH、S矩形ABCD與S 之間的數(shù)量關系,并說明理由.
(Ⅲ)遷移應用:
請直接應用“實驗探究”中發(fā)現(xiàn)的結(jié)論解答下列問題:

⑴如圖4,點E、F、G、H分別是面積為25的正方形ABCD各邊上的點,已知AH>BF,AE>DG,S四邊形EFGH=11,HF= ,求EG的長.

⑵如圖5,在矩形ABCD中,AB=3,AD=5,點E、H分別在邊AB、AD上,BE=1,DH=2,點F、G分別是邊BC、CD上的動點,且FG= ,連接EF、HG,請直接寫出四邊形EFGH面積的最大值.

【答案】(Ⅰ)證明:如圖1中,

∵四邊形ABCD是矩形,
∴AB∥CD,∠A=90°,
∵AE=DG,
∴四邊形AEGD是矩形,
∴SHGE= S矩形AEGD ,
同理SEGF= S矩形BEGC ,
∴S四邊形EFGH=SHGE+SEFG= S矩形ABCD
(Ⅱ)實驗探究:結(jié)論:2S四邊形EFGH=S矩形ABCD

理由:∵ = , = = , =
∴S四邊形EFGH= + + + ,
∴2S四邊形EFGH=2 +2 +2 +2 ﹣2 ,
∴2S四邊形EFGH=S矩形ABCD
(Ⅲ)遷移應用:解:(1)如圖4中,

∵2S四邊形EFGH=S矩形ABCD
=25﹣2×11=3=A1B1A1D1 ,
∵正方形的面積為25,∴邊長為5,
∵A1D12=HF2﹣52=29﹣25=4,
∴A1D1=2,A1B1= ,
∴EG2=A1B12+52= ,
∴EG=
⑵解:∵2S四邊形EFGH=S矩形ABCD+
∴四邊形A1B1C1D1面積最大時,矩形EFGH的面積最大.
①如圖5﹣1中,當G與C重合時,四邊形A1B1C1D1面積最大時,矩形EFGH的面積最大.
此時矩形A1B1C1D1面積=1( ﹣2)=

②如圖5﹣2中,當G與D重合時,四邊形A1B1C1D1面積最大時,矩形EFGH的面積最大.
此時矩形A1B1C1D1面積=21=2,

∵2> ﹣2,
∴矩形EFGH的面積最大值=
【解析】(Ⅰ)問題呈現(xiàn):只要證明SHGE= S矩形AEGD , 同理SEGF= S矩形BEGC , 由此可得S四邊形EFGH=SHGE+SEFG= S矩形BEGC;(Ⅱ)實驗探究:結(jié)論:2S四邊形EFGH=S矩形ABCD .根據(jù) = , = , = , = ,即可證明;(Ⅲ)遷移應用:(1)利用探究的結(jié)論即可解決問題.(2)分兩種情形探究即可解決問題.
【考點精析】通過靈活運用矩形的性質(zhì),掌握矩形的四個角都是直角,矩形的對角線相等即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】設在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應,那么就說y是x的函數(shù),記作y=f(x).在函數(shù)y=f(x)中,當自變量x=a時,相應的函數(shù)值y可以表示為f(a).
例如:函數(shù)f(x)=x2﹣2x﹣3,當x=4時,f(4)=42﹣2×4﹣3=5在平面直角坐標系xOy中,對于函數(shù)的零點給出如下定義:
如果函數(shù)y=f(x)在a≤x≤b的范圍內(nèi)對應的圖象是一條連續(xù)不斷的曲線,并且f(a).f(b)<0,那么函數(shù)y=f(x)在a≤x≤b的范圍內(nèi)有零點,即存在c(a≤c≤b),使f(c)=0,則c叫做這個函數(shù)的零點,c也是方程f(x)=0在a≤x≤b范圍內(nèi)的根.
例如:二次函數(shù)f(x)=x2﹣2x﹣3的圖象如圖1所示.

觀察可知:f(﹣2)>0,f(1)<0,則f(﹣2).f(1)<0.所以函數(shù)f(x)=x2﹣2x﹣3在﹣2≤x≤1范圍內(nèi)有零點.由于f(﹣1)=0,所以,﹣1是f(x)=x2﹣2x﹣3的零點,﹣1也是方程x2﹣2x﹣3=0的根.
(1)觀察函數(shù)y1=f(x)的圖象2,回答下列問題:
①f(a)f(b) 0(“<”“>”或“=”)
②在a≤x≤b范圍內(nèi)y1=f(x)的零點的個數(shù)是
(2)已知函數(shù)y2=f(x)=﹣ 的零點為x1 , x2 , 且x1<1<x2
①求零點為x1 , x2(用a表示);
②在平面直角坐標xOy中,在x軸上A,B兩點表示的數(shù)是零點x1 , x2 , 點 P為線段AB上的一個動點(P點與A、B兩點不重合),在x軸上方作等邊△APM和等邊△BPN,記線段MN的中點為Q,若a是整數(shù),求拋物線y2的表達式并直接寫出線段PQ長的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題原型:如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.過點D作△BCD的BC邊上的高DE, 易證△ABC≌△BDE,從而得到△BCD的面積為
初步探究:如圖②,在Rt△ABC中,∠ACB=90°,BC=a.將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.用含a的代數(shù)式表示△BCD的面積,并說明理由.
簡單應用:如圖③,在等腰三角形ABC中,AB=AC,BC=a.將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.直接寫出△BCD的面積.(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某市組織的大型商業(yè)演出活動中,對團體購買門票實行優(yōu)惠,決定在原定票價基礎上每張降價80元,這樣按原定票價需花費6000元購買的門票張數(shù),現(xiàn)在只花費了4800元.
(1)求每張門票的原定票價;
(2)根據(jù)實際情況,活動組織單位決定對于個人購票也采取優(yōu)惠政策,原定票價經(jīng)過連續(xù)二次降價后降為324元,求平均每次降價的百分率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰三角形ABC中,AB=AC,點D、E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點F.
(1)判斷∠ABE與∠ACD的數(shù)量關系,并說明理由;
(2)求證:過點A、F的直線垂直平分線段BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別在AC,BC上,且∠CDE=∠B,將△CDE沿DE折疊,點C恰好落在AB邊上的點F處.若AC=8,AB=10,則CD的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的兩邊在坐標軸上,點A的坐標為(10,0),拋物線y=ax2+bx+4過點B,C兩點,且與x軸的一個交點為D(﹣2,0),點P是線段CB上的動點,設CP=t(0<t<10).

(1)請直接寫出B、C兩點的坐標及拋物線的解析式;
(2)過點P作PE⊥BC,交拋物線于點E,連接BE,當t為何值時,∠PBE=∠OCD?
(3)點Q是x軸上的動點,過點P作PM∥BQ,交CQ于點M,作PN∥CQ,交BQ于點N,當四邊形PMQN為正方形時,請求出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著社會經(jīng)濟的發(fā)展和城市周邊交通狀況的改善,旅游已成為人們的一種生活時尚,洪祥中學開展以“我最喜歡的風景區(qū)”為主題的調(diào)查活動,圍繞“在松峰山、太陽島、二龍山和鳳凰山四個風景區(qū)中,你最喜歡哪一個?(必選且只選一個)”的問題,在全校范圍內(nèi)隨機抽取了部分學生進行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息回答下列問題:
(1)本次調(diào)查共抽取了多少名學生?
(2)通過計算補全條形統(tǒng)計圖;
(3)若洪祥中學共有1350名學生,請你估計最喜歡太陽島風景區(qū)的學生有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB,AC為⊙O的弦,AB=AC,連接AO.
(1)如圖l,求證:∠OAC=∠OAB;
(2)如圖2,過點B作AC的垂線交⊙O于點D,連接CD,設AO的延長線交BD于點E,求證:BE=CD;
(3)在(2)的條件下,如圖3,點F,G分別在CD,BD的延長線上,連接AG,AF,若CF×AG=8,∠GAB=45°+ ∠GAE,∠B=50°,求△ACF的面積.

查看答案和解析>>

同步練習冊答案