【題目】計算:(﹣1.414)0+(﹣1+2cos30°.

【答案】【解答】解:原式=1+3﹣+2×
=4.
【解析】原式第一項利用零指數(shù)冪法則計算,第二項利用負整數(shù)指數(shù)冪法則計算,最后一項利用特殊角的三角函數(shù)值計算即可得到結(jié)果.
【考點精析】解答此題的關(guān)鍵在于理解零指數(shù)冪法則的相關(guān)知識,掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù)),以及對整數(shù)指數(shù)冪的運算性質(zhì)的理解,了解aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某人的錢包內(nèi)有10元、20元和50元的紙幣各1張,從中隨機取出2張紙幣.
(1)求取出紙幣的總額是30元的概率
(2)找出總額超過51元的結(jié)果數(shù),然后根據(jù)概率公式計算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“世界家庭日”前夕,某校團委隨機抽取了n名本校學(xué)生,對“世界家庭日”當(dāng)天所喜歡的家庭活動方式進行問卷調(diào)查.問卷中的家庭活動方式包括:A.在家里聚餐; B.去影院看電影; C.到公園游玩; D.進行其他活動
每位學(xué)生在問卷調(diào)查時都按要求只選擇了其中一種喜歡的活動方式,該校團委收回全部問卷后,將收集到的數(shù)據(jù)整理并繪制成如圖所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)求n的值;
(2)四種方式中最受學(xué)生喜歡的方式為__(用A、B、C、D作答);選擇該種方式的學(xué)生人數(shù)占被調(diào)查的學(xué)生人數(shù)的百分比為_____ .
(3)根據(jù)統(tǒng)計結(jié)果,估計該校1800名學(xué)生中喜歡C方式的學(xué)生比喜歡B方式的學(xué)生多的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2014年益陽市的地區(qū)生產(chǎn)總值(第一、二、三產(chǎn)業(yè)的增加值之和)已進入千億元俱樂部,如圖表示2014年益陽市第一、二、三產(chǎn)業(yè)增加值的部分情況,請根據(jù)圖中提供的信息解答下列問題

(1)2014年益陽市的地區(qū)生產(chǎn)總值為多少億元?
(2)請將條形統(tǒng)計圖中第二產(chǎn)業(yè)部分補充完整;
(3)求扇形統(tǒng)計圖中第二產(chǎn)業(yè)對應(yīng)的扇形的圓心角度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某教研機構(gòu)為了了解初中生課外閱讀名著的現(xiàn)狀,隨機抽取了某校50名初中生進行調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成了以下不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:

類別

重視

一般

不重視

人數(shù)

a

15

b


(1)求表格中a,b的值;
(2)請補全統(tǒng)計圖;

(3)若某校共有初中生2000名,請估計該!爸匾曊n外閱讀名著”的初中生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為正方形ABCD的邊BC上一動點(P與B、C不重合),連接AP,過點B作BQ⊥AP交CD于點Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′交BA的延長線于點M.

(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論
(2)當(dāng)AB=3,BP=2PC,求QM的長;
(3)當(dāng)BP=m,PC=n時,求AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,DE、DF是△ABC的中位線,連接EF、AD,其交點為O.求證:

(1)△CDE≌△DBF
(2)OA=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線y1拋物線的一部分,且表達式為:y1=(x2﹣2x﹣3)(x≤3)曲線y2與曲線y1關(guān)于直線x=3對稱.

(1)求A、B、C三點的坐標(biāo)和曲線y2的表達式;
(2)過點D作CD∥x軸交曲線y1于點D,連接AD,在曲線y2上有一點M,使得四邊形ACDM為箏形(如果一個四邊形的一條對角線被另一條對角線垂直平分,這樣的四邊形為箏形),請求出點M的橫坐標(biāo);
(3)設(shè)直線CM與x軸交于點N,試問在線段MN下方的曲線y2上是否存在一點P,使△PMN的面積最大?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,頂點為( ,﹣ )的拋物線y=ax2+bx+c過點M(2,0).

(1)求拋物線的解析式;
(2)點A是拋物線與x軸的交點(不與點M重合),點B是拋物線與y軸的交點,點C是直線y=x+1上一點(處于x軸下方),點D是反比例函數(shù)y= (k>0)圖象上一點,若以點A,B,C,D為頂點的四邊形是菱形,求k的值.

查看答案和解析>>

同步練習(xí)冊答案