【題目】如圖,已知的弦,點上,且,聯(lián)結(jié),并延長交弦于點,,

1)求的大。

2)若點上,,求的長.

【答案】130°;(24

【解析】

1)連接OB,證OD垂直平分AB,在RtAOD中通過解直角三角形可求出∠OAB的度數(shù);

2)連接OE,證△OBE是等邊三角形,即可知BE的長度等于半徑.

1)如圖1,連接OB,

∴∠AOC=∠BOC,

180°AOC180°BOC,

∴∠AOD=∠BOD,

OAOB,

OD垂直平分AB

ADBDAB2,

設⊙O的半徑為r,則OD6r

RtAOD中,AO2AD2OD2

r2=(22+(6r2,

解得,r4,

cosOAD

∴∠OAD30°,

即∠OAB30°;

2)如圖2,連接OE,

由(1)知,∠OAB30°,

OBOA,

∴∠OBA=∠OAB30°,

EBAO,

∴∠EBD=∠OAB30°,

∴∠EBO=∠EBD+∠OBA60°,

OEOB,

∴△OEB是等邊三角形,

BEr4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我們知道:有兩條邊相等的三角形叫做等腰三角形.類似地,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.

1)如圖,在中,點,分別在,上,設相交于點,若.請你寫出圖中一個與相等的角,并猜想圖中哪個四邊形是等對邊四邊形?

2)在中,如果是不等于的銳角,點,分別在上,且.探究:滿足上述條件的圖形中是否存在等對邊四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小杰到學校食堂買飯,看到A、B兩窗口前面排隊的人一樣多(設為a人,a8,就站在A窗口隊伍的后面,過了2分鐘,他發(fā)現(xiàn)A窗口每分鐘有4人買了飯離開隊伍,B窗口每分鐘有6人買了飯離開隊伍,且B窗口隊伍后面每分鐘增加5人.

1)此時,若小杰繼續(xù)在A窗口排隊,則他到達窗口所花的時間是多少?(用含a的代數(shù)式表示)

2)此時,若小杰迅速從A窗口隊伍轉(zhuǎn)移到B窗口后面重新排隊,且到達B窗口所花的時間比繼續(xù)在A窗口排隊到達A窗口所花的時間少,求a的取值范圍.(不考慮其它因素)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,10×10的網(wǎng)格中,A,BC均在格點上,誚用無刻度的直尺作直線MN,使得直線MN平分ABC的周長(留作圖痕跡,不寫作法)

1)請在圖1中作出符合要求的一條直線MN;

2)如圖2,點MBC上一點,BM5.請在AB上作出點N的位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線Cyx2經(jīng)過變換可得到拋物線C1y1a1xxb1),C1x軸的正半軸交于點A,且其對稱軸分別交拋物線CC1于點B1、D1.此時四邊形OB1A1D1恰為正方形:按上述類似方法,如圖2,拋物線C1y1a1xxb1)經(jīng)過變換可得到拋物線C2y2a2xxb2),C2x軸的正半軸交于點A2,且其對稱軸分別交拋物線C1、C2于點B2D2.此時四邊形OB2A2D2也恰為正方形:按上述類似方法,如圖3,可得到拋物線C3y3a3xxb3)與正方形OB3A3D3,請?zhí)骄恳韵聠栴}:

1)填空:a1  b1  ;

2)求出C2C3的解析式;

3)按上述類似方法,可得到拋物線nynanxxbn)與正方形OBnAnDnn≥1

①請用含n的代數(shù)式直接表示出n的解析式;

②當x取任意不為0的實數(shù)時,試比較y2018y2019的函數(shù)值的大小關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】⊙O的半徑為5cm,弦AB//CD,且AB=8cm,CD=6cm,ABCD之間的距離為( )

A. 1 cm B. 7cm C. 3 cm4 cm D. 1cm 7cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在日常生活中我們經(jīng)常會使用到訂書機,如圖MN是裝訂機的底座,AB是裝訂機的托板AB始終與底座平行,連接桿DED點固定,點EAB處滑動,壓柄BC繞著轉(zhuǎn)軸B旋轉(zhuǎn).已知連接桿BC的長度為20cmBD=cm,壓柄與托板的長度相等.

1)當托板與壓柄的夾角∠ABC=30°時,如圖①點EA點滑動了2cm,求連接桿DE的長度.

2)當壓柄BC從(1)中的位置旋轉(zhuǎn)到與底座垂直,如圖②.求這個過程中,點E滑動的距離.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于M1,3),N兩點,點N的橫坐標為﹣3

1)根據(jù)圖象信息可得關于x的方程的解為 ;

2)求一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作ABDE,連接AD,EC.

(1)求證:△ADC≌△ECD;

(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習冊答案