【題目】蘇果超市用5000元購(gòu)進(jìn)一批新品種的蘋(píng)果進(jìn)行試銷(xiāo),由于試銷(xiāo)狀況良好,超市又調(diào)撥11000元資金購(gòu)進(jìn)該種蘋(píng)果,但這次的進(jìn)價(jià)比試銷(xiāo)時(shí)每千克多了0.5元,購(gòu)進(jìn)蘋(píng)果的數(shù)量是試銷(xiāo)時(shí)的2倍。

(1)試銷(xiāo)時(shí)該品種蘋(píng)果的進(jìn)價(jià)是每千克多少元?

(2)如果超市將該品種的蘋(píng)果按每千克7元定價(jià)出售,當(dāng)大部分蘋(píng)果售出后,余下的400千克按定價(jià)的七折售完,那么超市在這兩次蘋(píng)果銷(xiāo)售中共盈利多少元?(7分)

【答案】(1)設(shè)試銷(xiāo)時(shí)該品種蘋(píng)果的進(jìn)價(jià)是元/千克

由題意得:

解得 …………4分

經(jīng)檢驗(yàn): 是方程的根

答:試銷(xiāo)時(shí)該品種蘋(píng)果的進(jìn)價(jià)為5元/千克 …………5分

(2)共進(jìn)蘋(píng)果:(千克 )

總利潤(rùn):2600×7+400×4.9-11000-5000=4160(元)

答:超市兩次蘋(píng)果銷(xiāo)售中盈利4160元。 …………7分

【解析】1)求單價(jià),總價(jià)已知,應(yīng)根據(jù)數(shù)量來(lái)列等量關(guān)系.關(guān)鍵描述語(yǔ)是:蘋(píng)果數(shù)量是試銷(xiāo)時(shí)的2;等量關(guān)系為:2×試銷(xiāo)時(shí)的數(shù)量=本次數(shù)量.

2)根據(jù)盈利=總售價(jià)-總進(jìn)價(jià)進(jìn)行計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°,AB的垂直平分線分別交ABAC于點(diǎn)D、E

(1)AC12,BC9,求AE的長(zhǎng);

(2)過(guò)點(diǎn)DDFBC,垂足為F,則ADEDFB是否全等?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值:2x2-2xy-3-xy-x2-xy,其中x,y滿足|x+1|+y-22=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列實(shí)數(shù)中,最小的是( 。

A.0B.7C.2D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A4,0),B0,4),C6,6).

1)求拋物線的表達(dá)式;

2)證明:四邊形AOBC的兩條對(duì)角線互相垂直;

3)在四邊形AOBC的內(nèi)部能否截出面積最大的DEFG?(頂點(diǎn)DE,F,G分別在線段AO,OB,BC,CA上,且不與四邊形AOBC的頂點(diǎn)重合)若能,求出DEFG的最大面積,并求出此時(shí)點(diǎn)D的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題: 油桶制造廠的某車(chē)間主要負(fù)責(zé)生產(chǎn)制造油桶用的圓形鐵片和長(zhǎng)方形鐵片,該車(chē)間有工人42人,每個(gè)工人平均每小時(shí)可以生產(chǎn)圓形鐵片120片或者長(zhǎng)方形鐵片80片.如圖,一個(gè)油桶由兩個(gè)圓形鐵片和一個(gè)長(zhǎng)方形鐵片相配套.生產(chǎn)圓形鐵片和長(zhǎng)方形鐵片的工人各為多少人時(shí),才能使生產(chǎn)的鐵片恰好配套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算正確的是( 。

A.x2+x22x4B.x3x2x5C.x9÷x3x3D.x23x5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在第二象限到x軸距離為2,到y(tǒng)軸距離為5的點(diǎn)的坐標(biāo)是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】唐代大詩(shī)人李白喜好飲酒作詩(shī),民間有“李白斗酒詩(shī)百篇”之說(shuō).《算法統(tǒng)宗》中記載了一個(gè)“李白沽酒”的故事.詩(shī)云: 今攜一壺酒,游春郊外走.逢朋加一倍,入店飲半斗.相逢三處店,飲盡壺中酒.試問(wèn)能算士:如何知原有.
注:古代一斗是10升.
大意是:李白在郊外春游時(shí),做出這樣一條約定:遇見(jiàn)朋友,先到酒店里將壺里的酒增加一倍,再喝掉其中的5升酒.按照這樣的約定,在第3個(gè)店里遇到朋友正好喝光了壺中的酒.

(1)列方程求壺中原有多少升酒;
(2)設(shè)壺中原有a0升酒,在第n個(gè)店飲酒后壺中余an升酒,如第一次飲后所余酒為a1=2a0﹣5(升),第二次飲后所余酒為a2=2a1﹣5=22a0﹣(22﹣1)×5(升),… 用含an1的式子表示an= , 再用含a0和n的式子表示an=;
(3)按照這個(gè)約定,如果在第4個(gè)店喝光了壺中酒,請(qǐng)借助①中的結(jié)論求壺中原有多少升酒.

查看答案和解析>>

同步練習(xí)冊(cè)答案