解:(1)∵BO平分∠ABC,CO平分∠ACB,
∴∠EBO=∠OBC,∠FCO=∠OCB,
∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCB,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴BE=OE,CF=OF,
∴△BEO和△CFO是等腰三角形
即圖中等腰三角形有△BEO,△CFO;
EF與BE、CF之間的關(guān)系是EF=BE+CF,
理由是:∵BE=OE,CF=OF,
∴EF=BE+CF.
(2)∵BO平分∠ABC,CO平分∠ACG,
∴∠EBO=∠OBC,∠FCO=∠OCG,
∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCG,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴BE=OE,CF=OF,
∴△BEO和△CFO是等腰三角形
即圖中等腰三角形有△BEO,△CFO;
EF與BE、CF之間的關(guān)系是EF=BE-CF,
理由是:∵BE=OE,CF=OF,
∴EF=OE-OF=BE-CF.
分析:(1)等腰三角形有△BEO和△CFO,根據(jù)角平分線性質(zhì)和平行線性質(zhì)推出∠EBO=∠EOB,∠FOC=∠FCO,根據(jù)等角對等邊推出即可;根據(jù)BE=OE,CF=OF即可得出EF與BE、CF之間的關(guān)系;
(2)等腰三角形有△BEO和△CFO,根據(jù)角平分線性質(zhì)和平行線性質(zhì)推出∠EBO=∠EOB,∠FOC=∠FCO,根據(jù)等角對等邊推出即可;根據(jù)BE=OE,CF=OF即可得出EF與BE、CF之間的關(guān)系.
點評:本題考查了角平分線定義,平行線的性質(zhì),等腰三角形的判定等知識點,關(guān)鍵是推出BE=OE,CF=OF.