【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,BC=6, .求BE的長(zhǎng).
【答案】
(1)證明:連結(jié)OD,
∵OB=OD,
∴∠OBD=∠BDO,
∵∠CDA=∠CBD,
∴∠CDA=∠ODB,
又∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠ADO+∠ODB=90°,
∴∠ADO+∠CDA=90°,
即∠CDO=90°,
∴OD⊥CD,
∵OD是⊙O半徑,
∴CD是⊙O的切線
(2)解:∵∠C=∠C,∠CDA=∠CBD
∴△CDA∽△CBD
∴
∵ ,BC=6,
∴CD=4,
∵CE,BE是⊙O的切線
∴BE=DE,BE⊥BC
∴BE2+BC2=EC2,即BE2+62=(4+BE)2
解得:BE= .
【解析】(1)根據(jù)直徑所對(duì)的圓周角是直角,得到∠ADB=90°,由等量代換得到∠CDO=90°,即CD是⊙O的切線;(2)由∠C=∠C,∠CDA=∠CBD,得到△CDA∽△CBD,由比值得到CD=4,由CE,BE是⊙O的切線,得到BE=DE,BE⊥BC,由勾股定理得到BE2+BC2=EC2,求出BE的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b和反比例函數(shù)y在同一直角坐標(biāo)系中的大致圖象是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是邊長(zhǎng)為的等邊三角形,動(dòng)點(diǎn)以的速度從點(diǎn)出發(fā),沿線段向點(diǎn)運(yùn)動(dòng).
(1)如圖甲,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為,那么為何值時(shí),是直角三角形?
(2)若另一動(dòng)點(diǎn)從點(diǎn)出發(fā),沿射線方向運(yùn)動(dòng),連接交于點(diǎn),如果動(dòng)點(diǎn)都以的速度同時(shí)出發(fā).
①如圖乙,設(shè)運(yùn)動(dòng)時(shí)間為,那么為何值時(shí),是等腰三角形?
②如圖丙,連接,請(qǐng)你猜想:在點(diǎn)的運(yùn)動(dòng)過程中,和的面積有什么關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=5,BC=3,AC=4,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn).以下結(jié)論錯(cuò)誤的是( )
A.△ABC是直角三角形
B.AF是△ABC的中位線
C.EF是△ABC的中位線
D.△BEF的周長(zhǎng)為6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①已知直角三角形的面積為4,兩直角邊的比為1:2,則斜邊長(zhǎng)為;②直角三角形的最大邊長(zhǎng)為,最短邊長(zhǎng)為1,則另一邊長(zhǎng)為;③在△ABC中,若∠A:∠B:∠C=1:5:6,則△ABC為直角三角形;④等腰三角形面積為12,底邊上的高為4,則腰長(zhǎng)為5,其中正確結(jié)論的序號(hào)是( 。
A. 只有①②③ B. 只有①②④ C. 只有③④ D. 只有②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(3)班為了組隊(duì)參加學(xué)校舉行的“五水共治”知識(shí)競(jìng)賽,在班里選取了若干名學(xué)生,分成人數(shù)相同的甲、乙兩組,進(jìn)行了四次“五水共治”模擬競(jìng)賽,成績(jī)優(yōu)秀的人數(shù)和優(yōu)秀率分別繪制成如圖統(tǒng)計(jì)圖.
根據(jù)統(tǒng)計(jì)圖,解答下列問題:
(1)第三次成績(jī)的優(yōu)秀率是多少?并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)已求得甲組成績(jī)優(yōu)秀人數(shù)的平均數(shù),方差,請(qǐng)通過計(jì)算說明那一組成績(jī)優(yōu)秀的人數(shù)較穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:五邊形ABCDE中,AB∥CD,BC⊥AB,AB=BC=8,CD=5.
(1)說明∠A,∠E,∠D之間的數(shù)量關(guān)系;
(2)平移五邊形ABCDE,使D點(diǎn)移動(dòng)到C點(diǎn),畫出平移后的五邊形A'B'C'CE',并求出順次連接A、A'、E'、C、D、E、A各點(diǎn)所圍成的圖形的面積;
(3)在∠BAE和∠E'CD的內(nèi)部取一點(diǎn)F,使∠EAF=∠EAB,∠FCE'=∠DCE' ,求∠AFC與∠AED之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點(diǎn)D是邊BC上的點(diǎn)(與B,C兩點(diǎn)不重合),過點(diǎn)D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點(diǎn),下列說法正確的是( 。
A. 若AD⊥BC,則四邊形AEDF是矩形
B. 若AD垂直平分BC,則四邊形AEDF是矩形
C. 若BD=CD,則四邊形AEDF是菱形
D. 若AD平分∠BAC,則四邊形AEDF是菱形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com