【題目】閱讀材料:基本不等式≤(a>0,b>0),當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立.其中我們把叫做正數(shù)a、b的算術(shù)平均數(shù),叫做正數(shù)a、b的幾何平均數(shù),它是解決最大(。┲祮栴}的有力工具.
例如:在x>0的條件下,當(dāng)x為何值時(shí),x+有最小值,最小值是多少?
解:∵x>0,>0∴≥即是x+≥2
∴x+≥2
當(dāng)且僅當(dāng)x=即x=1時(shí),x+有最小值,最小值為2.
請(qǐng)根據(jù)閱讀材料解答下列問題
(1)若x>0,函數(shù)y=2x+,當(dāng)x為何值時(shí),函數(shù)有最小值,并求出其最小值.
(2)當(dāng)x>0時(shí),式子x2+1+≥2成立嗎?請(qǐng)說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,E、F分別是AB、DC邊上的點(diǎn),且AE=CF,
(1)求證:≌.
(2)若DEB=90,求證四邊形DEBF是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)政府“綠色出行”的號(hào)召,李華選擇騎自行車到郊外游玩,她離家的距離與時(shí)間的關(guān)系如圖所示,請(qǐng)根據(jù)圖像回答下列問題.
(1)李華到達(dá)離家最遠(yuǎn)的地方是幾時(shí)?此時(shí)離家多遠(yuǎn)?
(2)李華返回時(shí)的速度是多少?
(3)李華全程騎車的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,請(qǐng)回答下列問題.
材料一:我國古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了“三斜求積術(shù)”,即已知三角形的三邊長,求它的面積,用現(xiàn)代式子表示即為:①(其中為三角形的三邊長,為面積),而另一個(gè)文明古國古希臘也有求三角形面積的“海倫公式”;……②(其中)
材料二:對(duì)于平方差公式:公式逆用可得:,例:
(1)若已知三角形的三邊長分別為4,5,7,請(qǐng)分別運(yùn)用公式①和公式②,計(jì)算該三角形的面積;
(2)你能否由公式①推導(dǎo)出公式②?請(qǐng)?jiān)囋,寫出推?dǎo)過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,點(diǎn)C是弧EB的中點(diǎn),則下列結(jié)論:
①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正確的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.
(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請(qǐng)你設(shè)計(jì)出來;
(2)設(shè)生產(chǎn)A、B兩種產(chǎn)品總利潤為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關(guān)系式,并利用函數(shù)的性質(zhì)說明那種方案獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,⊙O過BC的中點(diǎn)D,且DE垂直AC于E.
(1)求證:AB=AC;
(2)求證:DE是⊙O的切線;
(3)若AB=13,BC=10,求DE的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中裝有紅球2個(gè)和白球2個(gè),這些球除顏色外其余都相同,小明從袋子中任意摸出一球,記下顏色后不放回,若小明再從剩余的球中任取一球,請(qǐng)你用列表法或樹狀圖的方法,求小明兩次都摸出紅球的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com