【題目】如圖,點B在線段AC上,點E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點。試探索BM和BN的關(guān)系,并證明你的結(jié)論。
【答案】BM⊥BN.見解析
【解析】試題分析:根據(jù)SAS推出△ABE≌△DBC,推出AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,求出∠ABD=∠DBC=90°,BM=AM=EM=AE,BN=CN=DN=CD,推出∠ABM=∠DBN,∠EBM=∠NBC即可.
解:BM=BN,BM⊥BN,
理由是:在△ABE和△DBC中,
,
∴△ABE≌△DBC(SAS),
∴AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,
∵∠ABD=∠DBC,∠ABD+∠DBC=180°,
∴∠ABD=∠DBC=90°,
∵M為AE的中點,N為CD的中點,
∴BM=AM=EM=AE,BN=CN=DN=CD,
∴BM=BN,∠EAB=∠MBA,∠CDB=∠DBN,∠AEB=∠EBM,∠NCB=∠NBC,
∵∠EAB=∠BDC,∠AEB=∠DCB,
∴∠ABM=∠DBN,∠EBM=∠NBC,
∴∠ABC=2∠DBN+2∠EBM=180°,
∴∠EBN+∠EBM=90°,
∴BM⊥BN.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示:∠ABC的平分線BF與△ABC中∠ACB的相鄰外角的平分線CF相交于點F,過F作DF∥BC,交AB于D,交AC于E.
問:(1)圖中有幾個等腰三角形?為什么?
(2)BD,CE,DE之間存在著什么關(guān)系?請證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016湖南省岳陽市第24題)如圖①,直線y=x+4交于x軸于點A,交y軸于點C,過A、C兩點的拋物線F1交x軸于另一點B(1,0).
(1)求拋物線F1所表示的二次函數(shù)的表達式;
(2)若點M是拋物線F1位于第二象限圖象上的一點,設四邊形MAOC和△BOC的面積分別為S四邊形MAOC和S△BOC,記S=S四邊形MAOC﹣S△BOC,求S最大時點M的坐標及S的最大值;
(3)如圖②,將拋物線F1沿y軸翻折并“復制”得到拋物線F2,點A、B與(2)中所求的點M的對應點分別為A′、B′、M′,過點M′作M′E⊥x軸于點E,交直線A′C于點D,在x軸上是否存在點P,使得以A′、D、P為頂點的三角形與△AB′C相似?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016廣西省賀州市第26題)如圖,矩形的邊OA在x軸上,邊OC在y軸上,點B的坐標為(10,8),沿直線OD折疊矩形,使點A正好落在BC上的E處,E點坐標為(6,8),拋物線y=ax2+bx+c經(jīng)過O、A、E三點.
(1)求此拋物線的解析式;
(2)求AD的長;
(3)點P是拋物線對稱軸上的一動點,當△PAD的周長最小時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC的平分線交CD于點E.
(1)若∠A=70°,求∠ABE的度數(shù);
(2)若AB∥CD,且∠1=∠2,判斷DF和BE是否平行,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com