【題目】小趙投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過程中發(fā)現(xiàn),當(dāng)月內(nèi)銷售單價(jià)不變,則月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):.
(1)設(shè)小趙每月獲得利潤為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?并求出最大利潤.
(2)如果小趙想要每月獲得的利潤不低于2000元,那么如何制定銷售單價(jià)才可以實(shí)現(xiàn)這一目標(biāo)?
【答案】(1)當(dāng)銷售單價(jià)定為35元時(shí),每月獲得的利潤最大,最大利潤為2250元;
(2)如果小趙想要每月獲得的利潤不低于2000元,那么他的銷售單價(jià)應(yīng)不低于30元而不高于40元.
【解析】
試題(1)根據(jù)總利潤=單利潤×銷售量即可得到函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的性質(zhì)即得結(jié)果;
(2)先求得利潤為2000元時(shí)對應(yīng)的銷售單價(jià),再根據(jù)二次函數(shù)的性質(zhì)即可求得結(jié)果.
(1)由題意得w=(x-20)·y=(x-20)·()
當(dāng)時(shí),;
(2)由題意得
解得x1 =30,x2 =40
即小趙想要每月獲得2000元的利潤,銷售單價(jià)應(yīng)定為30元或40元
∵
∴拋物線開口向下
∴當(dāng)30≤x≤40時(shí),w≥2000
答:(1)當(dāng)銷售單價(jià)定為35元時(shí),每月可獲得最大利潤,且最大利潤為2250元;
(2)如果小趙想要每月獲得的利潤不低于2000元,那么他的銷售單價(jià)應(yīng)不低于30元而不高于40元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在等腰直角三角形中,,為的中點(diǎn),且,垂足為點(diǎn),過點(diǎn)作交的延長線于點(diǎn),聯(lián)結(jié).
(1)求證:;
(2)連接,試判斷的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示的是一種置于桌面上的簡易臺(tái)燈,將其結(jié)構(gòu)簡化成圖2,燈桿AB與CD交于點(diǎn)O(點(diǎn)O固定),燈罩連桿CE始終保持與AB平行,燈罩下方FG處于水平位置,測得OC=20cm,∠COB=70°,∠F=40°,EF=EG,點(diǎn)G到OB的距離為12cm.
(1)求∠CEG的度數(shù).
(2)求燈罩的寬度(FG的長;結(jié)果精確到0.1cm,可用科學(xué)計(jì)算器).
(參考數(shù)據(jù):sin40°≈0.643,cos40°≈0.766,sin70°≈0.940,cos70°≈0.342)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場試銷一種成本為8元/千克的水果,經(jīng)試銷發(fā)現(xiàn),銷量y(千克)與銷售單價(jià)x(元)符合一次函數(shù)y=kx+b,且當(dāng)x=10時(shí),y=300;當(dāng)x=13時(shí),y=150.
(1)求y(千克)與x(元)(x>8)的函數(shù)關(guān)系式;
(2)設(shè)該超市銷售這種水果每天獲取的利潤為W元,那么當(dāng)銷售單價(jià)為何值時(shí),每天可獲得的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,平分交于點(diǎn)的垂直平分線交于點(diǎn),交于點(diǎn),若,則的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的直角坐標(biāo)系中,已知點(diǎn)A(2,0)、B(0,-4),將線段AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°至AC.
(1)求點(diǎn)C的坐標(biāo);
(2)若拋物線y=-x2+ax+4經(jīng)過點(diǎn)C.
①求拋物線的解析式;
②在拋物線上是否存在點(diǎn)P(點(diǎn)C除外)使△ABP是以AB為直角邊的等腰直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組為了測量河對岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點(diǎn),測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系內(nèi),△ABC各頂點(diǎn)的坐標(biāo)分別是A(﹣2,4),B(﹣4,3),C(﹣1,1).將△ABC向右平移5個(gè)單位長度,再向下平移4個(gè)單位長度得到△A′B′C′.
(1)請作出平移后的△A′B′C′,并寫出△A′B′C′各頂點(diǎn)的坐標(biāo);
(2)如果將△A′B′C′看成是由△ABC經(jīng)過一次平移得到的,請指出這一平移的平移方向和平移距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為宣傳“掃黑除惡”專項(xiàng)行動(dòng),社區(qū)準(zhǔn)備制作一幅宣傳版面,噴繪時(shí)為了美觀,要在矩形圖案四周外圍增加一圈等寬的白邊,已知圖案的長為2米,寬為1米,圖案面積占整幅宣傳版面面積的90%,若設(shè)白邊的寬為x米,則根據(jù)題意可列出方程( )
A. 90%×(2+x)(1+x)=2×1 B. 90%×(2+2x)(1+2x)=2×1
C. 90%×(2﹣2x)(1﹣2x)=2×1 D. (2+2x)(1+2x)=2×1×90%
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com