【題目】為了宣傳垃圾分類,小王寫了一封倡議書,用微博轉(zhuǎn)發(fā)的方式傳播,他設(shè)計(jì)了如下的轉(zhuǎn)發(fā)規(guī)則:將倡議書發(fā)表在自己的微博上,然后邀請(qǐng)個(gè)好友轉(zhuǎn)發(fā),每個(gè)好友轉(zhuǎn)發(fā)之后,又邀請(qǐng)個(gè)互不相同的好友轉(zhuǎn)發(fā),已知經(jīng)過兩輪轉(zhuǎn)發(fā)后,共有個(gè) 人參與了本次活動(dòng).

1x的值是多少?

2)再經(jīng)過幾輪轉(zhuǎn)發(fā)后,參與人數(shù)會(huì)超過人?

【答案】110;(2)再經(jīng)過兩輪轉(zhuǎn)發(fā)后,參與人數(shù)會(huì)超過人.

【解析】

1)第一輪轉(zhuǎn)發(fā)了x個(gè)人,第二輪轉(zhuǎn)發(fā)了x2個(gè)人,根據(jù)兩輪轉(zhuǎn)發(fā)共有111人參與列出方程求解即可;

2)根據(jù)103=1000,104=10000可得第四輪轉(zhuǎn)發(fā)后參與人數(shù)會(huì)超過人,即可得答案.

1)∵第一輪轉(zhuǎn)發(fā)了x個(gè)人,第二輪轉(zhuǎn)發(fā)了x2個(gè)人,

1+x+x2=111

解得:,(舍),

的值為

2)∵103=1000104=10000,1+102+10310000,

∴第四輪轉(zhuǎn)發(fā)后參與人數(shù)會(huì)超過人,

∴再經(jīng)過兩輪轉(zhuǎn)發(fā)后,參與人數(shù)會(huì)超過人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王老師給學(xué)生出了一道題:

(2a+b)(2ab)+2(2ab)2+(2ab216a2b)÷(2a)的值,其中a,b=﹣1,同學(xué)們看了題目后發(fā)表不同的看法.小張說(shuō):條件b=﹣1是多余的.”小李說(shuō):“不給這個(gè)條件,就不能求出結(jié)果,所以不多余.”

(1)你認(rèn)為他們誰(shuí)說(shuō)的有道理?為什么?

(2)xm等于本題計(jì)算的結(jié)果,試求x2m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).

(1)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于4cm2
(2)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ中PQ的長(zhǎng)度等于5cm?
(3)在(1)中,當(dāng)P,Q出發(fā)幾秒時(shí),△PBQ有最大面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)Pa,b),若點(diǎn)P′的坐標(biāo)為(a+kbka+b)(其中k為常數(shù),且k≠0),則稱點(diǎn)P′為點(diǎn)P“k屬派生點(diǎn)

如:P1,4)的“2屬派生點(diǎn)為P′1+2×42×1+4),即P′9,6);

1)點(diǎn)P-1,3)的“2屬派生點(diǎn)”P′的坐標(biāo)為______;

2)若點(diǎn)P“3屬派生點(diǎn)”P′的坐標(biāo)為(-1,3),則點(diǎn)P的坐標(biāo)為______

3)若點(diǎn)Px軸的正半軸上,點(diǎn)P“k屬派生點(diǎn)為點(diǎn)P′,線段PP′的長(zhǎng)度等于線段OP的長(zhǎng)度,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BC是⊙O的切線,B為切點(diǎn),OC平行于弦AD,連接CD。過點(diǎn)D作DE⊥AB于E,交AC于點(diǎn)P,求證:點(diǎn)P平分線段DE。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為半圓O的直徑,C為BA延長(zhǎng)線上一點(diǎn),CD切半圓O于點(diǎn)D。連結(jié)OD,作BE⊥CD于點(diǎn)E,交半圓O于點(diǎn)F。已知CE=12,BE=9

(1)求證:△COD∽△CBE;
(2)求半圓O的半徑 的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD平分∠BACBC于點(diǎn)D,點(diǎn)FBA的延長(zhǎng)線上,點(diǎn)E在線段CD上,EFAC相交于點(diǎn)G,∠BDA+CEG=180°

1ADEF平行嗎?請(qǐng)說(shuō)明理由;

2)若點(diǎn)HFE的延長(zhǎng)線上,且∠EDH=C,若∠F=40°,求∠H的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰直角△ABC,點(diǎn)P是斜邊BC上一點(diǎn)(不與B,C重合),PE是△ABP的外接圓⊙O的直徑

(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求 的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)為了綠化環(huán)境,計(jì)劃分兩次購(gòu)進(jìn)AB兩種花草,第一次分別購(gòu)進(jìn)A、B兩種花草30棵和15棵,共花費(fèi)675元;第二次分別購(gòu)進(jìn)AB兩種花草12棵和5兩次共花費(fèi)940兩次購(gòu)進(jìn)的A、B兩種花草價(jià)格均分別相同

B兩種花草每棵的價(jià)格分別是多少元?

若再次購(gòu)買A、B兩種花草共12、B兩種花草價(jià)格不變,且A種花草的數(shù)量不少于B種花草的數(shù)量的4倍,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.

查看答案和解析>>

同步練習(xí)冊(cè)答案