【題目】已知點A(x1,y1),點B(x2,y2)在直線y=kx+b(k≠0)上,且x1y1=x2y2=k,若y1y2=﹣9,則k的值等于_____.
【答案】3或﹣3
【解析】
由x1y1=x2y2=k可得出點A、B在反比例函數(shù)y=的圖象上,將y=代入y=kx+b中,整理后即可得出關(guān)于x的一元二次方程,根據(jù)根與系數(shù)的關(guān)系即可得出x1x2=-1,結(jié)合x1y1=x2y2=k、y1y2=-9即可得出關(guān)于k的一元二次方程,解之即可求出k值,取其負值即可.
∵x1y1=x2y2=k,
∴點A. B在反比例函數(shù)y=的圖象上,
將y=代入y=kx+b中,整理得:
kx2+bxk=0,
∵△=b2-4=b2+4k2.且k
∴x1、x2為該方程的兩個不相等的實數(shù)根,
∴x1x2=1.
∵x1y1=x2y2=k,y1y2=9,
∴y1y2==k2=9,
解得:k=3或k=-3.
故答案為:3或-3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,Rt△ABC的三個頂點A(-2,2),B(0,5),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請畫出△A1B1C的圖形.
(2)平移△ABC,使點A的對應點A2坐標為(-2,-6),請畫出平移后對應的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點旋轉(zhuǎn)可得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:紅星建材店為某工廠代銷一種建筑材料(這里的代銷是指廠家先免費提供貨源,待貨物售出后再進行結(jié)算,未售出的由廠家負責處理).當每噸售價為260元時,月銷售量為45噸.該建材店為提高經(jīng)營利潤,準備采取降價的方式進行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):當每噸售價每下降10元時,月銷售量就會增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費用100元.設每噸材料售價為x(元),該經(jīng)銷店的月利潤為y(元).
(1)當每噸售價是240元時,計算此時的月銷售量;
(2)求出y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(3)該建材店要獲得最大月利潤,售價應定為每噸多少元?
(4)小靜說:“當月利潤最大時,月銷售額也最大.”你認為對嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點C在半圓O上,AB=5cm,AC=4cm.D是弧BC上的一個動點(含端點B,不含端點C),連接AD,過點C作CE⊥AD于E,連接BE,在點D移動的過程中,BE的取值范圍是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC= .對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉(zhuǎn),分別交BC,AD于點E,F(xiàn).
(1)證明:當旋轉(zhuǎn)角為90°時,四邊形ABEF是平行四邊形;
(2)試說明在旋轉(zhuǎn)過程中,線段AF與EC總保持相等;
(3)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時AC繞點O順時針旋轉(zhuǎn)的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y=x+的圖象與性質(zhì)進行了探究.
下面是小明的探究過程,請補充完整:
(1)函數(shù)y=x+的自變量x的取值范圍是_____.
(2)下表列出了y與x的幾組對應值,請寫出m,n的值:m=_____,n=_____;
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | 4 | … | ||
y | … | ﹣ | ﹣ | ﹣2 | ﹣ | ﹣ | m | 2 | n | … |
(3)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,請完成:
①當y=﹣時,x=_____.
②寫出該函數(shù)的一條性質(zhì)_____.
③若方程x+=t有兩個不相等的實數(shù)根,則t的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為半圓O的直徑,AD、BC分別切⊙O于A,B兩點,CD切⊙O于點E,AD與CD相交于D,BC與CD相交于C,連結(jié)OD、OE、OC,對于下列結(jié)論:
①AD+BC=CD;②∠DOC=90°;③S梯形ABCD=CDOA;④.
其中結(jié)論正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點為點D,并與x軸相交于A、B兩點(點A在點B的左側(cè)),與y軸相交于點C.
(1)求點A、B、C、D的坐標;
(2)在y軸的正半軸上是否存在點P,使以點P、O、A為頂點的三角形與△AOC相似?若存在,求出點P的坐標;若不存在,請說明理由;
(3)取點E(,0)和點F(0,),直線l經(jīng)過E、F兩點,點G是線段BD的中點.
①點G是否在直線l上,請說明理由;
②在拋物線上是否存在點M,使點M關(guān)于直線l的對稱點在x軸上?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于O點,且BE=BF,∠BEF=2∠BAC。
(1)求證:OE=OF;
(2)若BC=,求AB的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com