將拋物線y=x2-2x向上平移3個(gè)單位,再向右平移4個(gè)單位得到的拋物線解析式為                            .
y=x2-10x+27
依題意可知,原拋物線頂點(diǎn)坐標(biāo)為(1,-1),
平移后拋物線頂點(diǎn)坐標(biāo)為(-5,2),
又因?yàn)槠揭撇桓淖兌雾?xiàng)系數(shù),
∴所得拋物線解析式為:y=(x-5)2+2.即y=x2-10x+27
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

2012年3月23日至3月25日為期3天、以“云聯(lián)世界感知未來”為主題的2012中國(guó)(重慶)國(guó)際云計(jì)算博覽會(huì)(下稱云博會(huì))在渝召開,重慶新市委書記張德江說在未來10年內(nèi)重慶實(shí)施“云端計(jì)劃” 建設(shè)智慧重慶。 市委市政府非常重視“云端服務(wù)器”的建設(shè),幾年前就已經(jīng)著手建設(shè)“云端服務(wù)器”,據(jù)統(tǒng)計(jì),某行政區(qū)在去年前7個(gè)月內(nèi),“云端服務(wù)器”的數(shù)量與月份之間的關(guān)系如下表:
月份x(月)
1
2
3
4
5
6
7
云端服務(wù)器數(shù)量(臺(tái))
32
34
36
38
40
42
44
而由于部分地區(qū)陸續(xù)被劃分到其它行政區(qū),該行政區(qū)8至12月份“云端服務(wù)器”數(shù)量(臺(tái))與月份x(月)之間存在如圖所示的變化趨勢(shì):

(1)請(qǐng)觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí),直接寫出與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢(shì),直接寫出與x之間滿足的一次函數(shù)關(guān)系式;
(2)在2011年內(nèi),市政府每月對(duì)每一臺(tái)云端服務(wù)器的資金也隨月份發(fā)生改變,若對(duì)每一臺(tái)服務(wù)器的投入的資金(萬元)與月份x滿足函數(shù)關(guān)系式: ,(1≤x≤7,且x為整數(shù));8至12月份的資金投入(萬元)與月份x滿足函數(shù)關(guān)系式:(8≤x≤12,且x為整數(shù))求去年哪個(gè)月政府對(duì)該片區(qū)的資金投入最大,并求出這個(gè)最大投入;
(3)2012年1月到3月份,政府計(jì)劃該區(qū)的云端服務(wù)器每月的數(shù)量比去年12份減少2a%,在去年12月份的基礎(chǔ)上每月每一臺(tái)云端服務(wù)器資金投入量將增加0.5a%,某民營(yíng)企業(yè)為表示對(duì)“智慧重慶”的鼎力支持,決定在1月到3月份對(duì)每臺(tái)云端服務(wù)器分別贊助3萬元。若計(jì)劃1月到3月份用于云端服務(wù)器所需的資金總額(政府+民企贊助)一共達(dá)到546萬元,請(qǐng)參考以下數(shù)據(jù),估計(jì)a的整數(shù)值。(參考數(shù)據(jù):172=289,182=324,192=361)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線交x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線的頂點(diǎn)為A,且經(jīng)過點(diǎn)B.

⑴求該拋物線的解析式;
⑵若點(diǎn)C(m,)在拋物線上,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四個(gè)二次函數(shù)的圖像中,分別對(duì)應(yīng)的是①y = ax2;②y = bx2;③y = cx2; ④y = dx2
則a、b、c、d的大小關(guān)系為(   )
A.a(chǎn)>b>c>dB.a(chǎn)>b>d>cC.b>a>c>dD.b>a>d>c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

把拋物線的圖像向右平移3個(gè)單位,再向上平移2個(gè)單位,所得到的圖象的解析式為,則b的值為【   】
A.2B.4C.6D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在Rt△AOB中,∠AOB=90°,AO=,∠ABO=30°.動(dòng)點(diǎn)P在線段AB上從點(diǎn)A向終點(diǎn)B以每秒個(gè)單位的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.在直線OB 上取兩點(diǎn)M、N作等邊△PMN.
(1)求當(dāng)?shù)冗叀鱌MN的頂點(diǎn)M運(yùn)動(dòng)到與點(diǎn)O重合時(shí)t的值.
(2)求等邊△PMN的邊長(zhǎng)(用t的代數(shù)式表示);
(3)如果取OB的中點(diǎn)D,以O(shè)D為邊在Rt△AOB 內(nèi)部作如圖2所示的矩形ODCE,點(diǎn)C在線段AB上.設(shè)等邊△PMN和矩形ODCE重疊部分的面積為S,請(qǐng)求出當(dāng)0≤t≤2秒時(shí)S與t的函數(shù)關(guān)系式,并求出S的最大值.
(4)在(3)中,設(shè)PN與EC的交點(diǎn)為R,是否存在點(diǎn)R,使△ODR是等腰三角形?若存在,求出對(duì)應(yīng)的t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

下表是二次函數(shù)y = ax2+bx+c(a≠ 0)的變量x、y 的部分對(duì)應(yīng)值:

則方程ax2+bx+c = 0的解是   .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖象與軸有交點(diǎn),則的取值范圍是【  】
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)的頂點(diǎn)為A,與y軸交于點(diǎn)B,作它關(guān)于以P(1,0)為中心的中心對(duì)稱的圖像頂點(diǎn)為C,交y軸于點(diǎn)D,則四邊形ABCD面積為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案