【題目】如圖,在破殘的圓形殘片上,弦AB的垂直平分線交弧AB于點(diǎn)C,交弦AB于點(diǎn)D,已知AB=8 cm,CD=2 cm.求破殘的圓形殘片的半徑.
【答案】解:在直線CD上取圓心O , 連接OA ,
設(shè)半徑為r cm.
∵弦AB的垂直平分線交弧AB于點(diǎn)C , 交弦AB于點(diǎn)D .
在Rt△ADO中,OA2=AD2+OD2 , ∴r2=42+(r-2)2 , ∴r=5
答:破殘的圓形殘片的半徑為5 cm.
【解析】設(shè)圓的半徑為r cm,根據(jù)ABCD和已知條件求出AD=AB, 在Rt△ADO中,利用勾股定理為等量關(guān)系列方程,求出半徑即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2),還要掌握垂徑定理的推論(推論1:A、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧B、弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧C、平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條;推論2 :圓的兩條平行弦所夾的弧相等)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖①是一塊邊長為1,周長記為P1的等邊三角形紙板,沿圖①的底邊剪去一塊邊長為 的等邊三角形紙板后得到圖②,然后沿同一底邊依次剪去一塊更小的等邊三角形紙板(即其邊長為前一塊被剪掉的等邊三角形紙板邊長的 )后得到圖 ③,④…,記第n塊剪掉的等邊三角形紙板的周長為Pn , 則Pn= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,BC=1,動點(diǎn)P從點(diǎn)B出發(fā),沿路線B→C→D作勻速運(yùn)動,那么△ABP的面積y與點(diǎn)P運(yùn)動的路程x之間的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明有一個(gè)呈等腰直角三角形的積木盒,現(xiàn)在積木盒中只剩下如圖1所示的九個(gè)空格,圖2是可供選擇的A,B,C,D四塊積木.
(1)小明選擇把積木A和B放入圖3,要求積木A和B的九個(gè)小圓恰好能分別與圖3中的九個(gè)小圓重合,請?jiān)趫D3中畫出他放入方式的示意圖(溫馨提醒:積木A和B的連接小圓的小線段還是要畫上哦。
(2)現(xiàn)從A、B、C、D四塊積木中任選兩塊,請用列表法或畫樹狀圖法求恰好能全部不重疊放入的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中有5個(gè)完全相同的小球,球上分別標(biāo)著點(diǎn)A(-2,0),B(1,0),C(4,0),D(0,-6),E(-2,3).從袋子中一次性隨機(jī)摸出3個(gè)球,這3個(gè)球分別代表的點(diǎn)恰好能確定一條拋物線(對稱軸平行于y軸)的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寫出下列命題的已知、求證,并完成證明過程.
命題:如果一個(gè)三角形的兩條邊相等,那么兩條邊所對的角也相等(簡稱:“等邊對等角”.)
(1)已知: .
求證: .
(2)證明:“等邊對等角”
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為5,且點(diǎn)O在直線l上,小明用一個(gè)三角板學(xué)具(∠ABC=90°,AB=BC=8)做數(shù)學(xué)實(shí)驗(yàn):
(1)如圖①,若A、B兩點(diǎn)在⊙O上滑動,直線BC分別與⊙O,L相交于點(diǎn)D,E.
①求BD的長;②當(dāng)OE=6時(shí),求BE的長;
(2)如圖②,當(dāng)點(diǎn)B在直線l上,點(diǎn)A在⊙O上,BC與⊙O相切于點(diǎn)P時(shí),則切線長PB=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)P,頂點(diǎn)為C(1,﹣2).
(1)求此函數(shù)的關(guān)系式;
(2)作點(diǎn)C關(guān)于x軸的對稱點(diǎn)D,順次連接A,C,B,D.若在拋物線上存在點(diǎn)E,使直線PE將四邊形ACBD分成面積相等的兩個(gè)四邊形,求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,拋物線上是否存在一點(diǎn)F,使得△PEF是以P為直角頂點(diǎn)的直角三角形?若存在,求出點(diǎn)F的坐標(biāo)及△PEF的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知某廣場菱形花壇ABCD的周長是24米,∠BAD=60°,則花壇對角線AC的長等于( )
A.6 米
B.6米
C.3 米
D.3米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com