16、如圖,已知D是△ABC的邊AB上一點(diǎn),F(xiàn)C∥AB,DF交AC于點(diǎn)E,DE=EF.求證:E是AC的中點(diǎn).
分析:要證明E是AC中點(diǎn),即AE=EC只要證明三角形ADE和CEF全等即可.這兩個(gè)三角形中,已知的條件有:DE=EF,一組對(duì)頂角,我們只要再得出一組對(duì)應(yīng)角相等即可得出兩三角形全等的結(jié)論.由于FC∥AB,那么∠ADF=∠F,由此就構(gòu)成了全等三角形判定中的ASA,因此兩三角形就全等了.
解答:證明:∵FC∥AB,
∴∠ADF=∠F.
∵∠AED=∠CEF,DE=EF,
∴△ADE≌△CEF.
∴AE=CE.
即E是AC的中點(diǎn).
點(diǎn)評(píng):本題主要考查了全等三角形的判定和性質(zhì);利用全等三角形來(lái)得出簡(jiǎn)單的線段相等是解此類題的常用方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,已知O是AB的中點(diǎn),再加上什么條件,能使△AOC和△BOD全等?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知C是AB的中點(diǎn),D是AC的中點(diǎn),E是BC的中點(diǎn).
(1)若DE=9cm,求AB的長(zhǎng);
(2)若CE=5cm,求DB的長(zhǎng).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知M是AB的中點(diǎn),N是AC的中點(diǎn),若MN=5cm,則BC=
 
 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知M是AB的中點(diǎn),AC∥MD,AC=MD,試說(shuō)明下面結(jié)論成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知M是AB的中點(diǎn),下面哪個(gè)結(jié)論不是根據(jù)“M是AB的中點(diǎn)”推出來(lái)的(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案