如圖,已知∠1=∠2,∠A=∠D,證明:∠E=∠C

見解析

解析試題分析:如圖∠1=∠3,根據(jù)平行線判定推出BC∥FE,知∠C=∠DFE,由∠A=∠D知DC∥AE,即可得出答案.
試題解析:如圖:

∵∠1=∠2,∠1=∠3,
∴∠2=∠3,
∴BC∥FE,
∴∠C=∠DFE,
∵∠A=∠D,
∴DC∥AE,
∴∠E=∠DEF
∴∠E=∠C
考點(diǎn): 平行線的判定與性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,∠1=∠2,∠3=100°,求∠4的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=80°,
試求:(1)∠EDC的度數(shù);
(2)若∠BCD=n°,試求∠BED的度數(shù).(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在一條數(shù)軸上有A、B兩點(diǎn),點(diǎn)A表示數(shù),點(diǎn)B表示數(shù)6。點(diǎn)P是該數(shù)軸上的一個(gè)動(dòng)點(diǎn)(不與A、B重合)表示數(shù)x。點(diǎn)M、N分別是線段AP、BP的中點(diǎn)。
(1)如果點(diǎn)P在線段AB上,則點(diǎn)M表示的數(shù)是        , 則點(diǎn)N表示的數(shù)是      (用含x 的代數(shù)式表示)。并計(jì)算線段MN的長。
(2)如果點(diǎn)P在點(diǎn)B右側(cè),請(qǐng)你計(jì)算線段MN的長。
(3)如果點(diǎn)P在點(diǎn)A左側(cè),則線段MN的長度會(huì)改變嗎?如果改變,請(qǐng)說明理由;如果不變,請(qǐng)直接寫出結(jié)果。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

)如圖,CD⊥AB,EF⊥AB,垂足分別為D、F,∠1=∠2,試判斷DG與BC的位置關(guān)系,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

實(shí)驗(yàn)證明,平面鏡反射光線的規(guī)律是:射到平面鏡上的光線和被反射出的光線與平面鏡所夾的銳角相等. 如圖1,一束光線m射到平面鏡a上,被a反射后的光線為n,則入射光線m、反射光線n與平面鏡a所夾的銳角∠1=∠2.

(1) 如圖2,一束光線m射到平面鏡a上,被a反射到平面鏡b上,又被b反射.若被b反射出的光線n與光線m平行,且∠1=50°,則∠2=_____°,∠3=_____°.

(2) 在(1)中m∥n,若∠1=55°,則∠3=______°;若∠1=40°,則∠3=______°.
(3) 由(1)、(2),請(qǐng)你猜想:當(dāng)兩平面鏡a、b的夾角∠3=______°時(shí),可以使任何射到平面鏡a上的光線m,經(jīng)過平面鏡a、b的兩次反射后,入射光線m與反射光線n平行.你能說明理由嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.

(1)求出∠BOD的度數(shù);
(2)請(qǐng)通過計(jì)算說明OE是否平分∠BOC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

作圖題:有公路同側(cè)、異側(cè)的兩個(gè)城鎮(zhèn)A、B,如下圖,電信部門要修建一座信號(hào)發(fā)射塔,按照設(shè)計(jì)要求,發(fā)射塔到兩個(gè)城鎮(zhèn)A、B的距離必須相等,到兩條公路、的距離也必須相等,發(fā)射塔C應(yīng)修建在什么位置?請(qǐng)用尺規(guī)作圖找出所有符合條件的點(diǎn),注明點(diǎn)C的位置。(保留作圖痕跡,不寫作法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:計(jì)算題

如圖,在菱形ABCD中,E是AB的中點(diǎn),且DE⊥AB.

【小題1】求∠ABD的度數(shù)
【小題2】若菱形的邊長為2,求菱形的面積

查看答案和解析>>

同步練習(xí)冊(cè)答案