如下圖所示,在△ABC中,∠B=45°,∠C=30°,BC=30+30,求AB的長(zhǎng).

答案:
解析:

  分析:過A作AD⊥BC于D,把斜三角形轉(zhuǎn)化為直角三角形,利用AD是兩個(gè)直角三角形的公共邊這一顯著特征,設(shè)AD=x把BD,DC用含x的式子表示出來,再由BD+CD=BC這一等量關(guān)系列方程,可求得AD,AB可在Rt△ABD中求得.

  小結(jié):方程思想是解直角三角形問題最常用的數(shù)學(xué)思想方法之一,方程思想的應(yīng)用關(guān)鍵是尋找中間量(如公共邊),設(shè)出未知數(shù),發(fā)現(xiàn)數(shù)量關(guān)系(如邊之間的和、差),建立等量關(guān)系,列出方程.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化.開始上課時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實(shí)驗(yàn)分析可知,學(xué)生的注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)的變化規(guī)律如下圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):
(1)開始上課后第五分鐘時(shí)與第三十分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?
(2)一道數(shù)學(xué)競(jìng)賽題,需要講19分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達(dá)到36,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如下圖所示,在△ABC中,∠A=40°,∠B=90°,AC的垂直平分線MN分別與AB、AC交于點(diǎn)D、E,求∠BCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、證明:如下圖所示,在四邊形ABCD中,AB+BD≤AC+CD,求證:AB<AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如下圖所示,在△ABC中,AB=AC,BC=6,點(diǎn)E、F是中線AD上的兩點(diǎn),且AD=4,則圖中陰影部分的面積為( 。
A、6B、12C、24D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如下圖所示,在等邊△ABC中,AD⊥BC,BD=3,則AB=
6
6

查看答案和解析>>

同步練習(xí)冊(cè)答案