【題目】如圖,把△ACE繞點C逆時針旋轉(zhuǎn)60°后與△BCD重合,BD、AE.交于點 M,連接AB、DE.
(1)求證:△ABC和△CDE為等邊三角形;
(2)求∠AMB的度數(shù).
【答案】(1)證明見解析;(2)60°.
【解析】試題分析:(1)由旋轉(zhuǎn)的性質(zhì)易得△ABC和△DCE是等邊三角形;
(2)由旋轉(zhuǎn)可知△BCD≌ACE,從而∠CAE=∠CBD,故可得∠AMB=180°-∠BAM-∠ABM=180°-∠BAC-∠CAE-∠ABM=60°.
試題解析:(1)證明:由旋轉(zhuǎn)可知:
BC=CA,CD=CE,∠BAC=∠DCE=60°,
∴△ABC和△DCE是等邊三角形.
(2)由旋轉(zhuǎn)可知△BCD≌ACE,
∴∠CAE=∠CBD,
∠AMB=180°-∠BAM-∠ABM=180°-∠BAC-∠CAE-∠ABM
=180°-∠BAC-(∠CAE+∠ABM)
=180°-∠BAC-(∠CDB+∠ABM)
=180°-∠BAC-ABC=180°-60°-60°=60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB,DC,DF.
(1)求∠CDE的度數(shù);
(2)求證:DF是⊙O的切線;
(3)若AC=2DE,求tan∠ABD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一節(jié)數(shù)學(xué)課上,老師布置了一個任務(wù):
已知,如圖1,在中,,用尺規(guī)作圖作矩形.
同學(xué)們開動腦筋,想出了很多辦法,其中小亮作了圖2,他向同學(xué)們分享了作法:
①分別以點、為圓心,大于長為半徑畫弧,兩弧分別交于點、,連接交于點;
②作射線,在上取點,使;
③連接,.
則四邊形就是所求作的矩形.
老師說:“小亮的作法正確.”
寫出小亮的作圖依據(jù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是( )
A.a>0 B.3是方程ax+bx+c=0的一個根
C.a+b+c=0 D.當x<1時,y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)小紅的媽媽開了間海產(chǎn)品干貨店,今年從沿海地區(qū)進了一批墨魚干,以60元/千克的價格銷售,由于墨魚干質(zhì)量好,價格便宜,加上來旅游的顧客很多,一時間銷售了不少.媽媽看到生意紅火,決定經(jīng)過提價來增加利潤.于是先后將售價提高到80元/千克和100元/千克,銷售量依次減少了,但每天的利潤依次增加,然后她又把售價調(diào)到140元/千克,此時過往的顧客大多數(shù)嫌貴,銷售量明顯下降,連利潤也呈下降趨勢.面對如此情況,小紅思考了一個問題:售價究竟定為多少才使每天的利潤最大呢?
小紅看了媽媽的賬單后馬上進行了分析調(diào)查,從賬單上了解到如下數(shù)據(jù):
售價(元/千克) | 60 | 80 | 100 | 120 | 140 |
每天銷售量(千克) | 22.5 | 20 | 17.5 | 15 | 12.5 |
請你利用數(shù)學(xué)知識幫小紅計算一下,
(1)設(shè)銷售量為y千克,售價為x元,y與x之間的關(guān)系式.
(2)售價究竟定為多少元才能每天的銷售額最大. (銷售額=售價銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售甲、乙兩種商品,現(xiàn)有如下信息:
請結(jié)合以上信息,解答下列問題:
(1)求甲、乙兩種商品的進貨單價;
(2)已知甲、乙兩種商品的零售單價分別為2元、3元,該商店平均每天賣出甲商品500件和乙商品1300件,經(jīng)市場調(diào)查發(fā)現(xiàn),甲種商品零售單價每降0.1元,甲種商品每天可多銷售100件,商店決定把甲種商品的零售單價下降m(m>0)元,在不考慮其他因素的條件下,求當m為何值時,商店每天銷售甲、乙兩種商品獲取的總利潤為1800元(注:單件利潤=零售單價﹣進貨單價)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3,E,F 分別是AB,BC邊上的點,且∠EDF=45°.將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=FM;
(2)當AE=1時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,如果△ACB和△CDE均為等邊三角形,點A、D、E在同一直線上,連接BE.則AD與BE的數(shù)量關(guān)系為 ;∠AEB的度數(shù)為 度.
(2)拓展探究:如圖2,如果△ACB和△CDE均為等腰三角形,∠ACB=∠DCE=90°,點A、D、E在同一直線上,連接BE,判斷線段AE與BE的位置關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com