【題目】如圖,數(shù)軸上有A,B兩點,分別對應的數(shù)為a,b。| a |=3,| b |=9,
(1)求a與b的值。
(2)求出線段AB的長度。
(3)若數(shù)軸上有一點C,且C到B的距離是C到A距離的3倍,直接寫出點C所表示的數(shù)。
(4)點P從點A出發(fā),先向左移動1個單位長度,再向右移動2個單位長度,再向左移動3個單位長度,再向右移動4個單位長度········,求出1889次移動后的點P所表示的數(shù)
【答案】(1)a=-3,b=9;(2)AB=12;(3)C所表示的數(shù)是0或-9;(4)-948
【解析】
(1)由數(shù)軸得到: ,根據,所以;
(2)兩點之間的長度,就是兩點之際的距離,利用求解;
(3)分兩種情況討論:當C點在AB之間時: ;當C在AB之外時,只能在A點的左側,,分別解出即可;
(4)1889次移動后的點P所表示的數(shù)為:,解出即可。
解:(1)由數(shù)軸可知: ,
并且:,
∴;
(2)A點對應的數(shù)是a
B點對應的數(shù)是b,
∴;
(3)當C點在AB之間時:
∴
∴
∴ ;
當C在AB之外時,只能在A點的左側,
∴
∴
∴
即:
∴
綜上所述,C所表示的數(shù)是0或-9
(4)依題意得:
科目:初中數(shù)學 來源: 題型:
【題目】已知,矩形OABC在平面直角坐標系內的位置如圖所示,點O為坐標原點,點A的坐標為(10,0),點B的坐標為(10,8),已知直線AC與雙曲線y=(m≠0)在第一象限內有一交點Q(5,n).
(1)求直線AC和雙曲線的解析式;
(2)若動點P從A點出發(fā),沿折線AO→OC的路徑以每秒2個單位長度的速度運動,到達C處停止.求△OPQ的面積S與的運動時間t秒的函數(shù)關系式,并求當t取何值時S=10.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以下各圖都是由同樣大小的圖形①按一定規(guī)律組成,其中第①個圖形中共有1個完整菱形,第②個圖形中共有5個完整菱形,第③個圖形中共有13個完整菱形,…,則第⑦個圖形中完整菱形的個數(shù)為( 。
A. 83B. 84C. 85D. 86
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC的平分線BD交邊AC于點D.
(1)求證:△BCD為等腰三角形;
(2)若∠BAC的平分線AE交邊BC于點E,如圖2,求證:BD+AD=AB+BE;
(3)若∠BAC外角的平分線AE交CB延長線于點E,請你探究(2)中的結論是否仍然成立?直接寫出正確的結論.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是⊙O的內接三角形,CE⊥AB于點E,BD⊥AC于點D,BD、CE相交于點F,連結ED.
(1)若∠ABC=45°,證明AE=EF;
(2)求證:△AED∽△ACB;
(3)過點A的直線AM∥ED, AM是⊙O的切線嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=8,AD=12,M是AD邊的中點,P是AB邊上的一個動點(不與A、B重合),PM的延長線交射線CD于Q點,MN⊥PQ交射線BC于N點。
(1)若點N在BC之間時,如圖:
①求證:∠NPQ=∠PQN;
②請問是否為定值?若是定值,求出該定值;若不是,請舉反例說明;
(2)當△PBN與△NCQ的面積相等時,求AP的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)(5mn2﹣4m2n)(﹣2mn)
(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)
(3) (-)2 016×161 008;
【答案】(1)﹣10m2n3+8m3n2;(2)2x﹣40;(3)1.
【解析】試題分析:(1)原式利用單項式乘以多項式法則計算即可得到結果;
(2)原式兩項利用多項式乘以多項式法則計算,去括號合并即可得到結果;
(3)先根據冪的乘方的逆運算,把(-)2 016化為()1008,再根據積的乘方的逆運算計算即可.
試題解析:(1)原式=(5mn2)(﹣2mn)+(﹣4m2n)(﹣2mn)=﹣10m2n3+8m3n2;
(2)原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.
(3)原式=()1008×161 008=(×16)1 008=1.
【題型】解答題
【結束】
19
【題目】如圖,方格圖中每個小正方形的邊長為1,點A、B、C都是格點.
(1)畫出△ABC關于直線BM對稱的△A1B1C1;
(2)寫出AA1的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,E、F分別是BC、AC的中點,延長BA到點D,使2AD=AB.連接DE,DF.
(1)求證:AF與DE互相平分;
(2)若BC=4,求DF的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com