【題目】如圖,四邊形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,M為對(duì)角線BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AMCM,AM+BM+CM的最小值為_____

【答案】

【解析】

根據(jù)“兩點(diǎn)之間線段最短”,當(dāng)M點(diǎn)位于BDCE的交點(diǎn)處時(shí),AM+BM+CM的值最小,即等于EC的長(zhǎng).

如圖,連接MN,∵△ABE是等邊三角形,

∴BA=BE,∠ABE=60°.

∵∠MBN=60°,

∴∠MBN﹣∠ABN=∠ABE﹣∠ABN.

即∠MBA=∠NBE.

又∵M(jìn)B=NB,

∴△AMB≌△ENB(SAS),

∴AM=EN,

∵∠MBN=60°,MB=NB,

∴△BMN是等邊三角形.

∴BM=MN.

∴AM+BM+CM=EN+MN+CM.

根據(jù)“兩點(diǎn)之間線段最短”,得EN+MN+CM=EC最短

∴當(dāng)M點(diǎn)位于BD與CE的交點(diǎn)處時(shí),AM+BM+CM的值最小,即等于EC的長(zhǎng),

過(guò)E點(diǎn)作EF⊥BC交CB的延長(zhǎng)線于F,

∴∠EBF=180°﹣120°=60°,

∵BC=4,

∴BF=2,EF=2,在Rt△EFC中,

∵EF2+FC2=EC2

EC=4

故答案為:4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,點(diǎn)是射線上一動(dòng)點(diǎn)(與點(diǎn)不重合)分別平分,分別交射線于點(diǎn)

若點(diǎn)運(yùn)動(dòng)到某處時(shí),恰有,此時(shí)有何位置關(guān)系?請(qǐng)說(shuō)明理由.

在點(diǎn)運(yùn)動(dòng)的過(guò)程中,之間的關(guān)系是否發(fā)生變化?若不變,請(qǐng)寫出它們的關(guān)系并說(shuō)明理由;若變化,請(qǐng)寫出變化規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時(shí)出發(fā).設(shè)慢車行駛的時(shí)間為x(h),兩車之間的距離為y(km),圖中的折線表示yx之間的函數(shù)關(guān)系.根據(jù)題中所給信息解答以下問題:

(1)甲、乙兩地之間的距離為____km;圖中點(diǎn)C的實(shí)際意義為:______;慢車的速度為_______,快車的速度為______;

(2)求線段BC所表示的yx之間的函數(shù)關(guān)系式,以及自變量x的取值范圍;

(3)若在第一列快車與慢車相遇時(shí),第二列快車從乙地出發(fā)駛往甲地,速度與第一列快車相同.請(qǐng)直接寫出第二列快車出發(fā)多長(zhǎng)時(shí)間,與慢車相距200km

(4)若第三列快車也從乙地出發(fā)駛往甲地,速度與第一列快車相同.如果第三列快車不能比慢車晚到,求第三列快車比慢車最多晚出發(fā)多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】特例研究:如圖,等邊的邊長(zhǎng)為8,求等邊的高.

經(jīng)驗(yàn)提升:

如圖,在中,,點(diǎn)P為射線BC上的任一點(diǎn),過(guò)點(diǎn)P,垂足分別為DE,過(guò)點(diǎn)C,垂足為補(bǔ)全圖形,判斷線段PD,PE,CF的數(shù)量關(guān)系,并說(shuō)明理由.

綜合應(yīng)用:

如圖,在平面直角坐標(biāo)系中有兩條直線,,若線段BC上有一點(diǎn)M的距離是1,請(qǐng)運(yùn)用中的結(jié)論求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1=3,CDEF,試說(shuō)明∠1=4.請(qǐng)將過(guò)程填寫完整.

解:∵∠1=3,

又∠2=3(_______),

∴∠1=____

____________(_______),

又∵CDEF

AB_____,

∴∠1=4(兩直線平行,同位角相等).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,山坡上有一棵樹AB,樹底部B點(diǎn)到山腳C點(diǎn)的距離BC為6米,山坡的坡角為30°. 小寧在山腳的平地F處測(cè)量這棵樹的高,點(diǎn)C到測(cè)角儀EF的水平距離CF = 1米,從E處測(cè)得樹頂部A的仰角為45°,樹底部B的仰角為20°(結(jié)果精確到0.1).

(1)求樹AB與測(cè)角儀EF的水平距離DF的長(zhǎng);
(2)求樹AB的高度.(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36, ≈1.73 )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB∥CD,BC平分∠ABE,∠C=33°,則∠BED的度數(shù)是( )

A.16°
B.33°
C.49°
D.66°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知雙曲線 經(jīng)過(guò)直角三角形OAB斜邊OA的中點(diǎn)D,且與直角邊AB相交于點(diǎn)C.若點(diǎn)A的坐標(biāo)為(﹣6,4),則△AOC的面積為v

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每個(gè)小方格是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形,菱形OABC在平面直角坐標(biāo)系的位置如圖所示.

(1)以O(shè)為位似中心,在第一象限內(nèi)將菱形OABC放大為原來(lái)的2倍得到菱形OA1B1C1 , 請(qǐng)畫出菱形OA1B1C1 , 并直接寫出點(diǎn)B1的坐標(biāo);
(2)將菱形OABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°菱形OA2B2C2 , 請(qǐng)畫出菱形OA2B2C2 , 并求出點(diǎn)B旋轉(zhuǎn)到點(diǎn)B2的路徑長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案