【題目】如圖,四邊形ABCD中,AB=AD=2,∠A=60°,BC=,CD=3.
(1)求∠ADC的度數(shù);
(2)求四邊形ABCD的面積.
【答案】(1)150°; (2)
【解析】試題分析:
(1)將△ABC繞點逆時針旋轉(zhuǎn)60°,則有等邊△ACC′,點D到等邊△ACC′的距離符合勾股定理的逆定理,故將△ADC繞點A逆時針旋轉(zhuǎn)60°,即可求解.
(2)將四邊形ABCD分割為等邊三角形和直角三角形,分別求出等邊三角形和直角三角形的面積即可.
試題解析:
(1)如圖,把△ABC繞點A逆時針旋轉(zhuǎn)60°,構(gòu)成三角形ACC′,把△ADC繞點A逆時針旋轉(zhuǎn)60°,構(gòu)成△AD′C.
由旋轉(zhuǎn)的性質(zhì)可知,△ACC′與△ADD′是等邊三角形,且DC′=BC=,AD′=DD′=AD=2,D′C′=DC=3,∠AD′C=∠ADC.
因為DD′2=4,D′C′2=9,DC′2=13,所以DD′2+D′C′2=DC′2.
所以△DD′C′是直角三角形,所以∠DD′C′=90°,
因為∠AD′D=60°,所以∠AD′C=60°+90°=150°.
所以∠ADC=150°.
(2)由(1)知,S四邊形ABCD=S四邊形ADC′D′.
S四邊形ADC′D′=S等邊△ADD′+SRt△DD′C′==3+.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A從原點出發(fā)沿數(shù)軸向左運動,同時,點B也從原點出發(fā)沿數(shù)軸向右運動,3秒后,兩點相距15個單位長度.已知點B的速度是點A的速度的4倍(速度單位:單位長度/秒).
(1)求出點A、點B運動的速度,并在數(shù)軸上標出A、B兩點從原點出發(fā)運動3秒時的位置;
(2)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動,幾秒時,原點恰好處在點A、點B的正中間?
(3)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動時,另一點C同時從B點位置出發(fā)向A點運動,當遇到A點后,立即返回向B點運動,遇到B點后又立即返回向A點運動,如此往返,直到B點追上A點時,C點立即停止運動.若點C一直以20單位長度/秒的速度勻速運動,那么點C從開始運動到停止運動,行駛的路程是多少個單位長度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC的面積是60,請完成下列問題:
(1)如圖①,若AD是△ABC的BC邊上的中線,則△ABD的面積 _△ACD的面積(選填“>”“<”或“=”).
(2)如圖②,若CD,BE分別是△ABC的AB,AC邊上的中線,求四邊形ADOE的面積可以用如下方法:連接AO,由AD=DB得:S△ADO=S△BDO,同理:S△CEO=S△AEO,設S△ADO=x,S△CEO=y(tǒng),則S△BDO=x,S△AEO=y(tǒng),由題意得:S△ABE=S△ABC=30,S△ADC=S△ABC=30,可列方程組為: ,通過解這個方程組可得四邊形ADOE的面積為 .
(3)如圖③,AD∶DB=1∶3,CE∶AE=1∶2,請你計算四邊形ADOE的面積,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】周末,小明,小紅等同學隨父母一同去某景點旅游,在購買門票時,小明和小紅有圖1所示的對話,根據(jù)圖2的門票票價和圖1所示的對話內(nèi)容完成下列問題.
(1)他們一共去了幾個成人幾個學生?
(2)請你幫他們算一算,用哪種方式買票更省錢,省多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,菱形ABCD的頂點A的坐標為(2,0),點B的坐標為(0,1),點C在第一象限,對角線BD與x軸平行.直線y=x+4與x軸、y軸分別交于點E,F(xiàn).將菱形ABCD沿x軸向左平移k個單位,當點C落在△EOF的內(nèi)部時(不包括三角形的邊),k的值可能是( )
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義一種新運算“⊕”:a⊕b=2a﹣ab,比如1⊕(﹣3)=2×1﹣1×(﹣3)=5
(1)求(﹣2)⊕3的值;
(2)若(﹣3)⊕x=(x+1)⊕5,求x的值;
(3)若x⊕1=2(1⊕y),求代數(shù)式x+y+1的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】世界讀書日,新華書店矩形購書優(yōu)惠活動:①一次性購書不超過100元,不享受打折優(yōu)惠;②一次性購書超過100元但不超過200元一律八折;③一次性購書200元以上一律打六折.小麗在這次活動中,兩次購書總共付款190.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是_____元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當兩個全等的直角三角形如圖1或圖2擺放時,都可以用“面積法”來證明,下面是小聰利用圖1證明勾股定理的過程:
將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2.
證明:連結(jié)DB,過點D作BC邊上的高DF,則DF=EC=b﹣a,
∵S四邊形ADCB=S△ACD+S△ABC= 12 b2+ 12 ab.
又∵S四邊形ADCB=S△ADB+S△DCB= 12 c2+ 12 a(b﹣a)
∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)
∴a2+b2=c2
請參照上述證法,利用圖2完成下面的證明.
將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠C=90°,沿過B點的一條直線BE折疊這個三角形, 使C點與AB邊上的一點D重合.
(1)當∠A滿足什么條件時,點D恰為AB的中點?寫出一個你認為適當?shù)臈l件,并利用此條件證明D為AB的中點;
(2)在(1)的條件下,若DE=1,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com