【題目】如圖所示,某攔水大壩的橫斷面為梯形ABCD,AE、DF為梯形的高,其中迎水坡AB的坡角α=45°,坡長(zhǎng)AB= 米,背水坡CD的坡度i=1: (i為DF與FC的比值),則背水坡CD的坡長(zhǎng)為米.
【答案】12
【解析】∵AE⊥BC、DF⊥BC,AD//BC,
∴∠DAE=∠AEB=90°,∠AEF=∠DFE=∠DFC=90°,
∴四邊形AEFD是矩形,∴DF=AE,
在Rt△AEB中,∠AEB=90°,AB=6 ,∠ABE=45°,∴AE=AB·sin∠ABE=6,
∴DF=6,
在Rt△DFC中,∠DFC=90°,DF:FC=i=1: =tan∠C, ∴∠C=30°,∴CD=2DF=12,
即背水坡CD的坡長(zhǎng)為12米,
故答案為:12.
根據(jù)題意得到四邊形AEFD是矩形,得到對(duì)邊相等,根據(jù)三角函數(shù)求出DF的長(zhǎng),根據(jù)坡度求出背水坡CD的坡長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是△ABC內(nèi)一點(diǎn),連接OB,OC,并將AB,OB,OC,AC的中點(diǎn)D,E,F,G依次連接得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,、正方形、正方形的頂點(diǎn)均在格點(diǎn)上.
(1)以格點(diǎn)為原點(diǎn),建立合適的平面直角坐標(biāo)系,使得、坐標(biāo)分別為、,則點(diǎn)的坐標(biāo)為______,點(diǎn)的坐標(biāo)為_______;
(2)利用面積計(jì)算線段________;
(3)點(diǎn)為直線上一動(dòng)點(diǎn),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了拉動(dòng)內(nèi)需,全國(guó)各地汽車購置稅補(bǔ)貼活動(dòng)在2009年正式開始,某經(jīng)銷商在政策出臺(tái)前一個(gè)月共售出某品牌汽車的手動(dòng)型和自動(dòng)型共960臺(tái),政策出臺(tái)后的第一個(gè)月售出這兩種型號(hào)的汽車共1228臺(tái),其中手動(dòng)型和自動(dòng)型汽車的銷售量分別比政策出臺(tái)前一個(gè)月增長(zhǎng)30%和25%.
(1)在政策出臺(tái)前一個(gè)月,銷售的手動(dòng)型和自動(dòng)型汽車分別為多少臺(tái)?
(2)若手動(dòng)型汽車每臺(tái)價(jià)格為8萬元,自動(dòng)型汽車每臺(tái)價(jià)格為9萬元.根據(jù)汽車補(bǔ)貼政策,政府按每臺(tái)汽車價(jià)格的5%給購買汽車的用戶補(bǔ)貼,問政策出臺(tái)后的第一個(gè)月,政府對(duì)這1228臺(tái)汽車用戶共補(bǔ)貼了多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為2,a2+1,則點(diǎn)P所在的象限是____;以方程組 的解為坐標(biāo)的點(diǎn)x,y在平面直角坐標(biāo)系中的位置是__________;在平面直角坐標(biāo)系中,如果mn>0,請(qǐng)寫出點(diǎn)m,|n|可能在的所有象限:____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知AB=AC,AB的垂直平分線交AB于點(diǎn)N,交AC于點(diǎn)M,連接MB.
(1)若∠ABC=70°,則∠NMA的度數(shù)是 度.
(2)若AB=8cm,△MBC的周長(zhǎng)是14cm.
①求BC的長(zhǎng)度;
②若點(diǎn)P為直線MN上一點(diǎn),請(qǐng)你直接寫出△PBC周長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax2+bx+4 與x軸交于點(diǎn)A(﹣3,0)和B(2,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)如圖1,若點(diǎn)D為CB的中點(diǎn),將線段DB繞點(diǎn)D旋轉(zhuǎn),點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)G,當(dāng)點(diǎn)G恰好落在拋物線的對(duì)稱軸上時(shí),求點(diǎn)G的坐標(biāo);
(3)如圖2,若點(diǎn)D為直線BC或直線AC上的一點(diǎn),E為x軸上一動(dòng)點(diǎn),拋物線
y=ax2+bx+4對(duì)稱軸上是否存在點(diǎn)F,使以B,D,F(xiàn),E為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】不透明的口袋里裝有紅、黃、藍(lán)三種顏色的小球(除顏色不同外,其它都一樣),其中紅球2個(gè),藍(lán)球1個(gè),現(xiàn)在從中任意摸出一個(gè)紅球的概率為 .
(1)求袋中黃球的個(gè)數(shù);
(2)第一次摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,請(qǐng)用樹狀圖或列表法求兩次摸出的都是紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分線交于點(diǎn)O1稱為第1次操作,作∠O1DC、∠O1CD的平分線交于點(diǎn)O2稱為第2次操作,作∠O2DC、∠O2CD的平分線交于點(diǎn)O3稱為第3次操作,…,則第5次操作后∠CO5D的度數(shù)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com