【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿BC的方向運動,且DE始終經(jīng)過點A,EFAC交于M點.

(1)求證:△ABE∽△ECM;

(2)探究:在△DEF運動過程中,重疊部分能否構成等腰三角形?若能,求出BE的長;若不能,請說明理由;

(3)當線段AM最短時,求重疊部分的面積.

【答案】(1)證明見解析;(2)能;BE=1;(3)

【解析】

1)由AB=AC∠B=∠C,由△ABC≌△DEF∠AEF=∠B,即得△ABE∽△ECM;

2)由∠AEF=∠B=∠C,且∠AME∠C,得∠AME∠AEF,則AE≠AM;當AE=EM時,則△ABE≌△ECM,根據(jù)對應邊相等即可求得BE的長;當AM=EM時,則∠MAE=∠MEA,即可證得△CAE∽△CBA,根據(jù)對應邊成比例即可求得BE的長;

3)設BE=x,由△ABE∽△ECM,根據(jù)對應邊成比例即可表示出CM的長,從而可以表示出AM的長,根據(jù)二次函數(shù)的性質即可求得結果。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】九年級學生到距離學校6千米的百花公園去春游,一部分學生步行前往,20分鐘后另一部分學生騎自行車前往,設(分鐘)為步行前往的學生離開學校所走的時間,步行學生走的路程為千米,騎自行車學生騎行的路程為千米,關于的函數(shù)圖象如圖所示.

1)求關于的函數(shù)解析式;

2)步行的學生和騎自行車的學生誰先到達百花公園,先到了幾分鐘?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著智能手機的普及,微信搶紅包已成為春節(jié)期間人們最喜歡的活動之一,某校七年級(1)班班長對全班50名學生在春節(jié)期間所搶的紅包金額進行統(tǒng)計,并繪制成了統(tǒng)計圖.請根據(jù)以上信息回答:

1)該班同學所搶紅包金額的眾數(shù)是______,

中位數(shù)是______

2)該班同學所搶紅包的平均金額是多少元?

3)若該校共有18個班級,平均每班50人,請你估計該校學生春節(jié)期間所搶的紅包總金額為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,,點的中點,平分,.

1)求證:

2)若,試判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtAEBRtAFC中,∠E=F=90°,BE=CFBEAC相交于點M,與CF相交于點DABCF相交于點N,∠EAC=FAB.有下列結論:①∠B=C;②CD=DN;③CM=BN;④△ACN≌△ABM.其中正確結論的序號是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是以AB為直徑的O的弦,點DO上的一點過點DO的切線交直線AC于點E,AD平分BAE,若AB10,DE3,則AE的長為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)x>0)的圖象與一次函數(shù)y=3x的圖象相交于點A,其橫坐標為2.

(1)求k的值;

(2)點B為此反比例函數(shù)圖象上一點,其縱坐標為3.過點BCBOA,交x軸于點C,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形OABC的面積為9,點O為坐標原點,點B在函數(shù)y=(k>0,x>0)的圖像上點P(m,n)是函數(shù)圖像上任意一點,過點P分別作x軸y軸的垂線,垂足分別為E,F.并設矩形OEPF和正方形OABC不重合的部分的面積為S.

(1)求k的值;

(2)當S=時 求p點的坐標;

(3)寫出S關于m的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為解決部分市民冬季集中取暖問題,需鋪設一條長4000米的管道,為盡量減少施工對交通造成的影響,施工時“…”,設實際每天鋪設管道x米,則可得方程20,根據(jù)此情景,題中用“…”表示的缺失的條件應補為( 。

A. 每天比原計劃多鋪設10米,結果延期20天完成

B. 每天比原計劃少鋪設10米,結果延期20天完成

C. 每天比原計劃多鋪設10米,結果提前20天完成

D. 每天比原計劃少鋪設10米,結果提前20天完成

查看答案和解析>>

同步練習冊答案