將一張紙第一次翻折,折痕為AB(如圖1),第二次翻折,折痕為PQ(如圖2),第三次翻折使AP與PQ重合,折痕為PC(如圖3),第四次翻折使PB與PA重合,折痕為PD(如圖4).此時,如果將紙復(fù)原到圖1的形狀,則∠CPD的大小是(  )
精英家教網(wǎng)
A、120°B、90°C、60°D、45°
分析:根據(jù)平角定義和角平分線定義進行分析整理即可.
解答:解:第一次折疊,可以不考慮;
第二次折疊,∠APQ+∠BPQ=180°;
第三次折疊,∠CPQ=
1
2
×∠APQ;
第四次折疊,∠DPQ=
1
2
×∠BPQ;
∠CPD=∠CPQ+∠DPQ=
1
2
∠APQ+
1
2
∠BPQ=
1
2
×180°=90°.
故選B.
點評:本題主要考查了折疊的特點,需理清折疊后角的變化,由此求出要求的角的度數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:第25章《圖形的變換》好題集(05):25.3 軸對稱變換(解析版) 題型:選擇題

將一張紙第一次翻折,折痕為AB(如圖1),第二次翻折,折痕為PQ(如圖2),第三次翻折使AP與PQ重合,折痕為PC(如圖3),第四次翻折使PB與PA重合,折痕為PD(如圖4).此時,如果將紙復(fù)原到圖1的形狀,則∠CPD的大小是( )

A.120°
B.90°
C.60°
D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第25章《圖形的變換》中考題集(24):25.3 軸對稱變換(解析版) 題型:選擇題

將一張紙第一次翻折,折痕為AB(如圖1),第二次翻折,折痕為PQ(如圖2),第三次翻折使AP與PQ重合,折痕為PC(如圖3),第四次翻折使PB與PA重合,折痕為PD(如圖4).此時,如果將紙復(fù)原到圖1的形狀,則∠CPD的大小是( )

A.120°
B.90°
C.60°
D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(32)(解析版) 題型:選擇題

(2008•紹興)將一張紙第一次翻折,折痕為AB(如圖1),第二次翻折,折痕為PQ(如圖2),第三次翻折使AP與PQ重合,折痕為PC(如圖3),第四次翻折使PB與PA重合,折痕為PD(如圖4).此時,如果將紙復(fù)原到圖1的形狀,則∠CPD的大小是( )

A.120°
B.90°
C.60°
D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省臺州市中考數(shù)學(xué)模擬卷(解析版) 題型:選擇題

(2008•紹興)將一張紙第一次翻折,折痕為AB(如圖1),第二次翻折,折痕為PQ(如圖2),第三次翻折使AP與PQ重合,折痕為PC(如圖3),第四次翻折使PB與PA重合,折痕為PD(如圖4).此時,如果將紙復(fù)原到圖1的形狀,則∠CPD的大小是( )

A.120°
B.90°
C.60°
D.45°

查看答案和解析>>

同步練習(xí)冊答案