【題目】某數(shù)學(xué)小組的10位同學(xué)站成一列做報數(shù)游戲,規(guī)則是:從前面第一位同學(xué)開始,每位同學(xué)依次報自己順序數(shù)的倒數(shù)的2倍加1,第1位同學(xué)報( +1),第2位同學(xué)報( +1),第3位同學(xué)報( +1)…這樣得到的n個數(shù)的積為

【答案】(n+1)(n+2)
【解析】解:第1位同學(xué)報的數(shù)是: +1= ,
第2位同學(xué)報的數(shù)是: +1= ,
第3位同學(xué)報的數(shù)是: +1=
…,
第n位同學(xué)報的數(shù)是: +1=
所以,這樣得到的n個數(shù)的積為:
× × ×…× = (n+1)(n+2).
所以答案是 (n+1)(n+2).
【考點精析】通過靈活運用有理數(shù)的四則混合運算,掌握在沒有括號的不同級運算中,先算乘方再算乘除,最后算加減即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系中,點A在函數(shù) 的圖象上,AB⊥ 軸于點B,AB的垂直平分線與 軸交于點C,與函數(shù) 的圖象交于點D。連結(jié)AC,CB,BD,DA,則四邊形ACBD的面積等于( )

A. 2
B.
C.4
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在全體麗水人民的努力下,我市剿滅劣V類水“河道清淤”工程取得了階段性成果,下面的右表是全市十個縣(市、區(qū))指標任務(wù)數(shù)的統(tǒng)計表;左圖是截止2017年3月31日和截止5月4日,全市十個縣(市、區(qū))指標任務(wù)累計完成數(shù)的統(tǒng)計圖.

(1)截止3月31日,完成進度(完成進度=累計完成數(shù)÷任務(wù)數(shù)×100%)最快、電慢的縣(市、區(qū))分別是哪一個?
(2)求截止5月4日全市的完成進度;
(3)請結(jié)合圖形信息和數(shù)據(jù)分析,對I且完成指標任務(wù)的行動過程和成果進行評價.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖A、B分別為數(shù)軸上的兩點,A點對應(yīng)的數(shù)為-10,B點對應(yīng)的數(shù)為90.

(1)請寫出與A,B兩點距離相等的M點對應(yīng)的數(shù); 

(2)現(xiàn)在有一只電子螞蟻PB點出發(fā)時,以3個單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以2個單位/秒的速度向右運動,設(shè)兩只電子螞蟻在數(shù)軸上的C點相遇,求C點對應(yīng)的數(shù)是多少.

(3)若當電子螞蟻PB點出發(fā)時,以3個單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以2個單位/秒的速度向右運動,求經(jīng)過多長的時間兩只電子螞蟻在數(shù)軸上相距35個單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)生物學(xué)研究結(jié)果,青春期男女生身高增長速度呈現(xiàn)如下圖規(guī)律,由圖可以判斷,下列說法錯誤的是(
A.男生在13歲時身高增長速度最快
B.女生在10歲以后身高增長速度放慢
C.11歲時男女生身高增長速度基本相同
D.女生身高增長的速度總比男生慢

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=1,AD=,AF平分∠DAB,過C點作CE⊥BD于E,延長AF、EC交于點H,下列結(jié)論中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED。正確的是( )

A. ②③ B. ②③④ C. ③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上有A、B兩點,所表示的數(shù)分別為n,n+6,A點以每秒5個單位長度的速度向右運動,同時B點以每秒3個單位長度的速度也向右運動,設(shè)運動時間為t 秒.

(1)當n=1時,求AB的值;

(2)當t 為何值時,A、B兩點重合;

(3)在上述運動的過程中,若P為線段AB的中點,數(shù)軸上點C所表示的數(shù)為n+10是否存在t 的值,使得線段PC=4,若存在,求t 的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系xOy中,已知A(6,0),B(8,6),將線段OA平移至CB,點D在x軸正半軸上(不與點A重合),連接OC,AB,CD,BD.

(1)寫出點C的坐標;
(2)當△ODC的面積是△ABD的面積的3倍時,求點D的坐標;
(3)設(shè)∠OCD=α,∠DBA=β,∠BDC=θ,判斷α、β、θ之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的切線,B為切點,圓心在AC上,∠A=30°,D為 的中點.
(1)求證:AB=BC;
(2)求證:四邊形BOCD是菱形.

查看答案和解析>>

同步練習(xí)冊答案