【題目】如圖,已知是圓的直徑,點是圓上一點,與過點的切線垂直,垂足為點,直線與的延長線相交于點,弦平分,交于點,連接
(1)求證:平分;
(2)求證:是等腰三角形;
(3)若,,求圓的半徑長.
【答案】(1)證明見解析;(2)證明見解析;(3) 圓的半徑為.
【解析】
(1)根據(jù)切線的性質(zhì)得OC⊥DP,而AD⊥DP,則肯定判斷OC∥AD,根據(jù)平行線的性質(zhì)得∠DAC=∠OCA,加上∠OAC=∠OCA,所以∠OAC=∠DAC,即可求證.
(2)根據(jù)圓周角定理由AB為圓O的直徑得∠ACB=90°,則∠BCE=45°,再利用圓周角定理得∠BOE=2∠BCE=90°,則∠OFE+∠OEF=90°,易得∠CFP+∠OEF=90°,再根據(jù)切線的性質(zhì)得到∠OCF+∠PCF=90°,而∠OCF=∠OEF,根據(jù)等角的余角相等得到∠PCF=∠CFP,于是可判斷△PCF是等腰三角形;
(3)連結(jié)OE.由AB為 O的直徑,得到∠ACB=90°,根據(jù)角平分線的定義得到∠BCE=45°,設(shè)圓O的半徑為r,則OF=6-r,根據(jù)勾股定理列方程即可得到結(jié)論.
(1)證明:∵為圓的切線,
∴,
∵,
∴//,
∴,
∵
∴,
∴,
∴平分;
(2)證明:∵是圓的直徑,
∴,
∵平分∠,
∴,
∴,
∴,
而,
∴,
∵,
∴,即,
而,
∴,
∴是等腰三角形;
(3)連結(jié),
∵是圓的直徑,
∴,
∵平分∠,
∴,
∴,即,
設(shè)圓的半徑為,則,
在中,
∵,
∴,
解得,
當時,(符合題意),
當時,(不合題意,舍去),
∴圓的半徑為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O為坐標原點,∠AOB=30°,∠ABO=90°,且點A的坐標為(2,0).
(1) 求點B的坐標;
(2) 若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A、B、O三點,求此二次函數(shù)的解析式;
(3) 在(2)中的二次函數(shù)圖象的OB段(不包括點O、B)上,是否存在一點C,使得四邊形ABCO的面積最大?若存在,求出這個最大值及此時點C的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,王華同學(xué)在晚上由路燈AC走向路燈BD,當他走到點P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當他向前再步行12m到達Q點時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部.已知王華同學(xué)的身高是1.6m,兩個路燈的高度都是9.6m.
(1)求兩個路燈之間的距離;
(2)當王華同學(xué)走到路燈BD處時,他在路燈AC下的影子長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,P為CD邊上一點(DP<CP),∠APB=90°.將△ADP沿AP翻折得到△AD′P,PD′的延長線交邊AB于點M,過點B作BN∥MP交DC于點N.
(1)求證:AD2=DPPC;
(2)請判斷四邊形PMBN的形狀,并說明理由;
(3)如圖2,連接AC,分別交PM,PB于點E,F(xiàn).若=,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,P點為半徑OA上異于O點和A點的一個點,過P點作與直徑AB垂直的弦CD,連接AD,作BE⊥AB,OE∥AD交BE于E點,連接AE、DE、AE交CD于F點.
(1)求證:DE為⊙O切線;
(2)若⊙O的半徑為3,sin∠ADP=,求AD;
(3)請猜想PF與FD的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c滿足a+c=b,4a+c=-2b,拋物線y=ax+bx+c(a>0)過點A(-,y1),B(,y2,)C(3,y3),則y1,y2,y3的大小關(guān)系為( )
A. y2<y1<y3B. y3<y1<y2C. y2<y3<y1D. y1<y2<y3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C在AB為直徑的圓O上,AD與過點C的切線垂直,垂足為點D,AD交圓O于點E.
(1)求證:AC平分∠DAB;
(2)連接BE,若BE=6,sin∠CAD=,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,二次函數(shù)的圖象與x軸交于A、B兩點,其中A點坐標為,點,另拋物線經(jīng)過點,M為它的頂點.
求拋物線的解析式;
求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,連接OC,過點A作AD∥OC,交BC的延長線于D,AB交OC于E,∠ABC=45°.
(1)求證:AD是⊙O的切線;
(2)若AE=,CE=3.
①求⊙O的半徑;
②求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com