【題目】如圖,在平面直角坐標系中,已知A(a,0),B(b,0),其中a,b滿足|a+2|+(b﹣4)2=0.

(1)填空:a=_____,b=_____;

(2)如果在第三象限內(nèi)有一點M(﹣3,m),請用含m的式子表示△ABM的面積;

(3)在(2)條件下,當m=﹣3時,在y軸上有一點P,使得△ABP的面積與△ABM的面積相等,請求出點P的坐標.

【答案】(1).﹣2,4; (2).﹣3m;(3).(0,﹣3)或(0,3).

【解析】

(1)由絕對值和平方的非負性可求得a+2=0,b﹣4=0,即可求出a、b的值;(2)MCx軸交x軸于點C,,分別求出ABMC的長度,由三角形面積公式表示出ABM的面積即可;(3)求出當m=﹣3時,ABM的面積,設(shè)P(0,a),將ABP的面積表示出來,列方程求解即可.

(1)由題意得:a+2=0,b﹣4=4,

a=﹣2,b=4;

(2)MCx軸交x軸于點C,

A(﹣2,0),B(4,0),

AB=6,

MC=﹣m,

SABM=AB·MC=×6×(﹣m)=﹣3m;

(3)m=﹣3時,SABM=﹣3×(﹣3)=9,

設(shè)P(0,a),

OP= |a|,

SABP=AB·OP=×6×|a|=3 |a|,

3 |a|=9,

解得a=±3,

P(0,3)或(0,﹣3).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,矩形ABCD中,AE平分BCE,,則下面的結(jié)論:①是等邊三角形;②;③;④,其中正確結(jié)論有(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B、C是⊙O上的點,D是弦AC的延長線一點,且BA=BD,DB的延長線交⊙OE.

(1)求證:CD=CE;

(2)若CAD的中點,求證:AB是⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在杭州西湖風景游船處,如圖,在離水面高度為5m的岸上,有人用繩子拉船靠岸,開始時繩子BC的長為13m,此人以0.5m/s的速度收繩.10s后船移動到點D的位置,問船向岸邊移動了多少m?(假設(shè)繩子是直的,結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BE=CF,AB∥DE,添加下列哪個條件不能證明△ABC≌△DEF的是( )

A. AB=DE B. ∠A=D C. AC=DF D. AC∥DF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校決定在47日開展世界無煙日宣傳活動,活動有A社區(qū)板報、B集會演講、C喇叭廣播、D發(fā)宣傳畫四種宣傳方式.學校圍繞你最喜歡的宣傳方式是什么?,在全校學生中進行隨機抽樣調(diào)查四個選項中必選且只選一項,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了兩種不完整的統(tǒng)計圖表.

選項

方式

百分比

A

社區(qū)板報

m

B

集會演講

30%

C

喇叭廣播

25%

D

發(fā)宣傳畫

10%

請結(jié)合統(tǒng)計圖表,回答下列問題:

(1)本次抽查的學生共   人,m=   ,并將條形統(tǒng)計圖補充完整;

(2)若該校學生有900人,請你估計該校喜歡集會演講這項宣傳方式的學生約有多少人?

(3)學校采用抽簽方式讓每班在A、B、C、D四種宣傳方式中隨機抽取兩種進行展示.請用樹狀圖或列表法求某班所抽到的兩種方式恰好是集會演講喇叭廣播的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,甲、乙兩個容器內(nèi)都裝了一定數(shù)量的水,現(xiàn)將甲容器中的水勻速注入乙容器中.圖2中的線段AB,CD分別表示容器中的水的深度h(厘米)與注入時間t(分鐘)之間的函數(shù)圖象.下列結(jié)論錯誤的是( )

A. 注水前乙容器內(nèi)水的高度是5厘米

B. 甲容器內(nèi)的水4分鐘全部注入乙容器

C. 注水2分鐘時,甲、乙兩個容器中的水的深度相等

D. 注水1分鐘時,甲容器的水比乙容器的水深5厘米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時間,以800/分的速度勻速從乙地到甲地,兩人距離乙地的路程y()與小張出發(fā)后的時間x()之間的函數(shù)圖象如圖所示.

(1)求小張騎自行車的速度;

(2)求小張停留后再出發(fā)時yx之間的函數(shù)表達式;

(3)求小張與小李相遇時x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,以點M(4,0)為圓心,MO為半徑的半圓交x軸于點A,P為半圓上的一個動點,以點P為直角頂點在OP上方作RtOPB,且OP=2PB,OB交半圓于點Q.

(1)當P為半圓弧的中點時,求OPB的面積.

(2)在運動過程中,求MB的最大值.

(3)在運動過程中,若點Q將線段OB分為1:2的兩部分,求出此時點P的坐標.

查看答案和解析>>

同步練習冊答案