在Rt△OAB中,∠AOB=90°,已知AB=數(shù)學(xué)公式,tan∠OAB=3,將△OAB繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)90°得到△ODC,如圖1建立坐標(biāo)系.
(1)寫出A、B、C三點(diǎn)坐標(biāo)(不必寫過(guò)程);
(2)若拋物線y=ax2+bx+c經(jīng)過(guò)A、B、C三點(diǎn),如圖2,M是拋物線的頂點(diǎn),試判定△MCD的形狀,并說(shuō)明理由;
(3)在(2)的拋物線上,且在第一象限中,是否存在點(diǎn)P,使四邊形BDCP的面積W最大?若存在,請(qǐng)求出這個(gè)最大面積;若不存在,請(qǐng)說(shuō)明理由.

解:(1)Rt△OAB中,AB=,tan∠OAB=3,
∴OA=1,OB=3,即:A(-1,0)、B(0,3);
∵△OCD是由△OAB繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)90°所得
∴OC=OB=3,即:C(3,0);
綜上,A(-1,0)、B(0,3)、C(3,0).

(2)設(shè)拋物線的對(duì)稱軸與線段CD交于點(diǎn)F、與x軸交于點(diǎn)G,過(guò)點(diǎn)D作DE⊥MG于E,如右圖;
設(shè)拋物線的解析式為:y=a(x+1)(x-3),代入點(diǎn)B的坐標(biāo),得:
a(0+1)(0-3)=3,a=-1
∴拋物線的解析式:y=-(x+1)(x-3)=-(x+1)2+4,即 M(1,4);
由題意知:OD=OA=1,則 D(0,1);
∴E(1,1)、G(1,0);
∴DE=1,ME=4-1=3
∴tan∠DME===tan∠DCO,即:∠DME=∠DCO,
又∵∠MFD=∠CFG,
∴∠MDF=∠FGC=90°,即△MCD是直角三角形.

(3)過(guò)點(diǎn)P作PN⊥x軸于N,如右圖;
設(shè)點(diǎn)P(x,-x2+2x+3),則:PN=-x2+2x+3、ON=x、CN=3-x;
由圖知:S四邊形BPCD=S梯形BPNO+S△PNC-S△OCD,則有:
W=×[3+(-x2+2x+3)]×x+×(-x2+2x+3)×(3-x)-×1×3
=-x2+x+3
=-(x-2+
∴存在符合條件的點(diǎn)P,且W的最大值為:
分析:(1)在Rt△OAB中,已知AB長(zhǎng)和∠OAB的正切值,通過(guò)解直角三角形能求出OA、OB的長(zhǎng),即可確定A、B的坐標(biāo).而△OCD是由△OAB旋轉(zhuǎn)所得,因此根據(jù)OC=OB即可確定點(diǎn)C的坐標(biāo).
(2)首先利用待定系數(shù)法確定拋物線的解析式,進(jìn)而能求得點(diǎn)M的坐標(biāo).然后根據(jù)M、D、C三點(diǎn)的坐標(biāo),找出圖中相等的角,利用角之間的關(guān)系來(lái)判斷△MCD的形狀.
(3)根據(jù)拋物線的解析式,先設(shè)出點(diǎn)P的坐標(biāo),過(guò)P作x軸的垂線,那么四邊形BDCP的面積可由五邊形的面積(梯形+三角形)減去△OCD得到面積求得,根據(jù)所得函數(shù)的性質(zhì),即可判斷出是否存在W的最大值.
點(diǎn)評(píng):題目考查了圖形的旋轉(zhuǎn)、函數(shù)解析式的確定、特殊三角形的判定以及圖形面積的解法等綜合知識(shí),在解題過(guò)程中,要注意數(shù)形結(jié)合思想的合理應(yīng)用,難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△OAB中,∠A=90°,∠ABO=30°,OB=
8
3
3
,邊AB的垂直平分線CD分別與AB、x軸、y軸交于點(diǎn)C、G、D.
(1)求點(diǎn)G的坐標(biāo);
(2)求直線CD的解析式;
(3)在直線CD上和平面內(nèi)是否分別存在點(diǎn)Q、P,使得以O(shè)、D、P、Q為頂點(diǎn)的四邊形是菱形?若存在,求出點(diǎn)Q得坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△OAB中,∠OAB=90°,且點(diǎn)B的坐標(biāo)為(4,3).
(1)在圖中畫出△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△OA1B1;
(2)求點(diǎn)B旋轉(zhuǎn)到點(diǎn)B1所經(jīng)過(guò)的路線長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△OAB中,∠OBA=90°,點(diǎn)B在x軸上,點(diǎn)A在第二象限,已知雙曲線y=
kx
(k<0)經(jīng)過(guò)Rt△OAB斜邊OA的中點(diǎn)D,且與直角邊AB相交于點(diǎn)C.若點(diǎn)A的坐標(biāo)為(-6,4),則:(1)點(diǎn)D的坐標(biāo)是
(-3,2)
(-3,2)
;(2)△AOC的面積為
9
9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•六盤水)已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=2
3
,若以O(shè)為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)B在第一象限內(nèi),將Rt△OAB沿OB折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處.
(1)求經(jīng)過(guò)點(diǎn)O,C,A三點(diǎn)的拋物線的解析式.
(2)求拋物線的對(duì)稱軸與線段OB交點(diǎn)D的坐標(biāo).
(3)線段OB與拋物線交與點(diǎn)E,點(diǎn)P為線段OE上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)O,點(diǎn)E重合),過(guò)P點(diǎn)作y軸的平行線,交拋物線于點(diǎn)M,問(wèn):在線段OE上是否存在這樣的點(diǎn)P,使得PD=CM?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△OAB中,∠OBA=90°,且點(diǎn)B的坐標(biāo)為(0,4).
(1)寫出點(diǎn)A的坐標(biāo).
(2)畫出△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后的△OA1B1;
(3)求點(diǎn)A旋轉(zhuǎn)到點(diǎn)A1所經(jīng)過(guò)的路線長(zhǎng)(結(jié)果保留π).

查看答案和解析>>

同步練習(xí)冊(cè)答案