【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,6,10…這樣的數(shù)稱為三角形數(shù),而把1,4,9,16…這樣的數(shù)稱為正方形數(shù).從圖中可以發(fā)現(xiàn),任何一個(gè)大于1正方形數(shù)都可以看作兩個(gè)相鄰三角形數(shù)之和.下列等式中,符合這一規(guī)律的是(  )

A. 13=3+10 B. 25=9+16 C. 36=15+21 D. 49=18+31

【答案】C

【解析】題目中“三角形數(shù)”的規(guī)律為1、3、6、10、15、21…“正方形數(shù)”的規(guī)律為1、4、9、16、25…,根據(jù)題目已知條件:從圖中可以發(fā)現(xiàn),任何一個(gè)大于1的“正方形數(shù)”都可以看作兩個(gè)相鄰“三角形數(shù)”之和.可得出最后結(jié)果.

解:這些三角形數(shù)的規(guī)律是: 1, 2 ,3 ,4, 5, 6, 7, 8,

其正方形數(shù)是這串?dāng)?shù)中相鄰兩數(shù)之和,

很容易看到:恰有15+21=36.
故選C.
“點(diǎn)睛”本題考查探究、歸納的數(shù)學(xué)思想方法.本題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對(duì)于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.本題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)45+(-22)+(-8)-(-5);(2)(-4)-(-5)+(-4)-3;

(3)÷; (4)-14+|3-5|-16÷(-2)×

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是矩形ABCD的對(duì)角線,過AC的中點(diǎn)OEF⊥AC,交BC于點(diǎn)E,交AD于點(diǎn)F,連接AECF

1)求證:四邊形AECF是菱形;

2)若AB=,DCF=30°,求四邊形AECF的面積.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,點(diǎn)Ax軸上,點(diǎn)Cy軸上,A點(diǎn)坐標(biāo)為(10, 0),C點(diǎn)坐標(biāo)為(0, 6),將邊BC折疊,使點(diǎn)B落在邊OA上的點(diǎn)D處,求線段EA 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別是A(3,2),B(1,3),△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A1OB1

(1)點(diǎn)A關(guān)于點(diǎn)O中心對(duì)稱的點(diǎn)P的坐標(biāo)為;
(2)在網(wǎng)格內(nèi)畫出△A1OB1;
(3)點(diǎn)A1、B1的坐標(biāo)分別為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a、b、c在數(shù)軸上的位置如圖所示,則:

(1)“<、>、=”填空:a____0,b____0,c_____0;

(2)“<、>、=”填空:﹣a____0,a﹣b____0,c﹣a____0;

(3)化簡(jiǎn):|﹣a|﹣|a﹣b|+|c﹣a|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O.M為AD中點(diǎn),連接CM交BD于點(diǎn)N,且ON=1.
(1)求BD的長;
(2)若△DCN的面積為2,求四邊形ABNM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 m≥2,n≥2,且 m、n 均為正整數(shù),如果將 mn 進(jìn)行如圖所示的分解,那么下列四個(gè)敘述中正確的有(

①在 25 分解結(jié)果是 1517兩個(gè)數(shù)

②在 42 分解結(jié)果中最大的數(shù)是9.

③若 m3 分解結(jié)果中最小的數(shù)是 23,則 m=5.

④若 3n 分解結(jié)果中最小的數(shù)是 79,則 n=5.

A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題呈現(xiàn):如圖1,點(diǎn)E、F、G、H分別在矩形ABCD的邊AB、BC、CD、DA上,AE=DG,求證:2S四邊形EFGH=S矩形ABCD(S表示面積)

實(shí)驗(yàn)探究:某數(shù)學(xué)實(shí)驗(yàn)小組發(fā)現(xiàn):若圖1AH≠BF,點(diǎn)GCD上移動(dòng)時(shí),上述結(jié)論會(huì)發(fā)生變化,分別過點(diǎn)E、GBC邊的平行線,再分別過點(diǎn)F、HAB邊的平行線,四條平行線分別相交于點(diǎn)A1、B1、C1、D1,得到矩形A1B1C1D1

如圖2,當(dāng)AH>BF時(shí),若將點(diǎn)G向點(diǎn)C靠近(DG>AE),經(jīng)過探索,發(fā)現(xiàn):2S四邊形EFGH=S矩形ABCD+

如圖3,當(dāng)AH>BF時(shí),若將點(diǎn)G向點(diǎn)D靠近(DG<AE),請(qǐng)?zhí)剿?/span>S四邊形EFGH、S矩形ABCD之間的數(shù)量關(guān)系,并說明理由.

遷移應(yīng)用:

請(qǐng)直接應(yīng)用實(shí)驗(yàn)探究中發(fā)現(xiàn)的結(jié)論解答下列問題:

如圖4,點(diǎn)E、F、G、H分別是面積為25的正方形ABCD各邊上的點(diǎn),已知AH>BF,AE>DG,S四邊形EFGH=11,HF=,求EG的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案